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SUMMARY

In future deregulated power grids, dynamic state estimation (DSE) enabled by phasor measurement units
(PMUs) and data networks will play an important role in system monitoring operations [[1]. While the
high sampling rates of PMUs will enable monitoring at unprecedented accuracies, high data rates will
impose a heavy burden on data networks. Multi-area state estimation (MASE), where a large power grid
is divided into sectors and local state estimates of each sector are communicated to a monitoring center
for further processing is a potential solution. The true benefit of MASE can however be realized by
using local estimators capable of sending their estimates to the monitoring center only during periods of
significant events. This will necessitate new event-triggered state estimators, as opposed to continuous
estimators such as the conventional Kalman filter (KF). [2].

We investigate the applicability of a class of DSE algorithms known as set-membership filters (SMFs)
which inherently posses a so called data-selective property [3]] that can be exploited in event-triggered
state estimation. Similar to the KF, an SMF also relies on time iterations of prediction and correction
steps. However, unlike the KF, an SMF can be easily designed to perform the measurement-driven
correction steps only when the observed measurements are sufficiently informative (data-selective). In
a typical power system, an SMF will therefore perform only prediction steps much of the time, with
correction steps coming into effect only during a system abnormality such as a fault condition. Since the
prediction step alone can be carried out at the remote monitoring center as well, the local SMFs need to
send the information required for the correction steps only during fault conditions. The basic principle
behind an SMF is to use bounding sets for random variables rather than probability distributions. In
this paper, we will describe a computationally simple linear SMF algorithm for DSE, which is based
on ellipsoidal bounding sets, including the computations required for the prediction step and the data-
selective correction step. We will also present an extension to non-linear DSE, based on locally linear
approximations.

We then present an experimental study aimed at evaluating the suitability of the SMF algorithm for
evened-triggered DSE. In this study, we consider the simulation of a six-state system consisting of a sin-
gle machine infinite bus system (SMIB) with a synchronous generator [4]]. The SMF algorithm is used
to track the synchronous generator states under steady-state conditions as well as under disturbances
caused by fault conditions, which allows us to observe the ability of the SMF algorithm to track the state
under steady-state conditions without requiring any correction-step updates (thus, for example, ignoring
PMU measurements), while maintaining accurate tracking during a fault using frequent correction steps.

Simulation results are presented which demonstrate that (1) in terms of accuracy, the data-selective SMF
borbnwmr @myumanitoba.ca.



performs identically to the continually updating extended KF, and (2) the SMF only performs the correc-
tion step less than 50% of the time during transient and disturbances. The impact of inevitable modeling
errors on the performance of the SMF is also investigated.
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1 INTRODUCTION

Power system state estimation (PSSE) is a powerful tool for monitoring and control of a power grid [5,6].
Traditionally, PSSE has relied on supervisory control and data acquisition (SCADA) measurements, typ-
ically updated at 2-4 second intervals. Such low measurement rates permit only static-state estimation
which has a limited usefulness in real-time monitoring. The recent introduction of synchronized phasor
measurement units (PMUs) which can directly record measurements, at rates as high as 120 frames per
second [ 7], presents new opportunities for real-time power system monitoring through dynamic state es-
timation (DSE) [2]]. Nevertheless, the large amounts of data produced by PMU networks will necessitate
multi-area state estimation (MASE) [8] to ease the burden on communication infrastructure. In MASE,
many distributed local state estimators are employed which communicate their estimates to a centralized
monitoring center for fusion. To reduce the communication overhead, PMU-based MASE will require
new event-triggered or data-selective state estimators. A class of algorithms that inherently possesses the
data-selective estimation capability is set membership filters (SMFs) [9-14]].

An SMF is also based on the familiar prediction-correction recursive structure of the statistical state
estimation algorithms such as the Kalman filter (KF) [[15]. However, in contrast to KF, SMF can be
designed to produce a new state estimate only when the observations contain significant innovation.
Unlike statistical approaches that assume probability distributions for the random variable (for example
in the KF, those are assumed to be jointly Gaussian), an SMF only assumes the uncertainties associated
with those belong to bounded sets in Euclidean space, referred to as membership sets or bounding sets.
Typically noise variables are assumed to have known membership sets which are chosen based on prior
knowledge about the bounds of these variables. Given the membership set for the state vector found at
a time instant k — 1, the SMF will determine a new membership set for the state vector at time k£ which
is consistent with the given state-space model, assumed membership sets, and the current observation
vector. The estimation error at any time step will be represented by its membership set.

An important feature of the SMF formulation is the possibility of a data-selective correction step that
can be skipped by checking a condition. More specifically, if the size of the membership set for the state
vector obtained in the prediction step can not be further decreased by a correction based on the given
observation vector the update-step is skipped. An SMF estimator only determines a most likely mem-
bership set for the state vector. If a point estimate is desired, a suitable value within the membership set
can be chosen. Furthermore, in applications where reliability and safety are the concerns, an acceptable
bound on the state, rather than a point estimate may be all that is required [[11]].

While SMF is not widely known in the PSSE community, this approach has been considered for various
purposes previously. Application of SMF in state estimation [9-12,|14f], and parameter estimation [|16]
can be found in the context of controls and adaptive signal processing. The main goal of this paper
is to bring to light the potential applicability of the ellipsoidal SMF (E-SMF) for event-triggered DSE.
Ellipsoidal bounding sets are most common in SMF due to its advantages over other bounding sets such
as hypercubes, polytopes, intervals, etc. [[17]. This is mainly due to the fact that they lead to simpler
mathematical formulations. First, we present basic principles of ellipsoidal SMF for state estimation in
linear systems and an extension to non-linear systems based on locally linear approximations. Then the
feasibility of applying SMF in the context of power system is studied using a six state system consisting
of single machine infinite bus system (SMIB) with synchronous generator. It has been observed in this
study, that the data-selective SMF performs identical to the extended KF (EKF) in terms of accuracy, but
only performs the correction step less than 50% of the time during a disturbance. Finally, the impact of
inevitable modeling errors on the performance of the SMF is also investigated.

Preliminaries :

An ellipsoidal set E C RY with the center ¢ € RY can be defined by two equivalent forms

E(c,P,6%)={ccR": (x—¢)TP ! (x —¢c) < 6%}, (1)
={ceR": (x—c)TGZP_l(x—c) <1},

where P € RV is a symmetric positive semi-definite matrix that defines the shape of the ellipsoid

(shape-matrix) and o2 is a scaling factor. 3



2 DATA SELECTIVE SMF STATE ESTIMATOR

In this section, we describe the SMF algorithm used in our study which is based on [3}/18,|19]]. We first
consider the state estimation in a linear dynamical system. As outlined at the end of this section, the
solution can be easily extended to a nonlinear system by using the method of local linearization as in the
case of EKF [20].

2.1 E-SMF algorithm for linear systems

Consider the discrete-time linear dynamical system given by the general state-space model,

X = ApXp—1 +wy, )
Yi = Cixi + vy, (3)

where k is discrete time index, x; € R” is the state vector, y, € R™ is the observation vector (n is the
number of states and m is the number of measurements), and w; € R" and v, € R” are random noise
vectors. The state transition matrix A; € R"*" and the observation matrix C; € R™*" are assumed to be
known. E-SMF algorithm treats a random vector as an unknown vector with an ellipsoidal membership
set (EMS). The EMSs of the noise vector w; and v are assumed a prior known. Let these be given by
E(0,W,,1) and E(0,V, 1) respectively. It is assumed that noise is zero mean.

The basis of the E-SMF algorithm is that, given an EMS for the initial system state xo, use (2) and
to recursively compute an updated EMS for x;, for k = 1,2, ..., based on the observation y; and the EMS
computed at time k — 1. More specifically let E(xk,l,Pk,l,G,g_l) be the EMS obtained for x;_; after
observing yi,...,yx—1. Then, in prediction step at time k, we obtain a predicted EMS for x;;_ using the
state-transition equation , and by taking the vector sum of E(x;_1,P_1, sz_l) projected in time and
E(0,Wy, 1), Ty = AtE(x¢—1,Pi—1,07 ;) DE(,Wy, 1). The resulting set is not necessarily ellipsoidal.
Let E(xk‘k, 1 Prji—1; sz‘ +_) be the predicted EMS for Xik—1- Next, the correction step for time k uses
the new observation y; and the observation equation (3)) to correct the predicted EMS and obtains an
updated EMS E (x, Py, sz) for x;. The exact membership set for x; is the intersection of two ellipsoidal
sets E(xk|k,1,Pk|k,1,Gk2‘k_l) and Sy = {x € R": (yy — Cx)"V ! (yx — Cix) < 1} the result of which is
not necessarily ellipsoidal either.

In both prediction and correction steps ellipsoidal sets will be fitted to non-ellipsoidal sets Tj and
E(xk\k—17Pk|k—1,0'kz‘k,1) NSy in some optimal fashion. By minimizing the size of EMS we can find
an optimal ellipsoid. The most common measures of the size of an ellipsoidal set are the geometric
volume, or equivalently the determinant of the matrix o>P (1) (determinant criterion), and the trace of
G2P (trace criterion) [17]. Note that E-SMF algorithm only finds an EMS for the state to be estimated.
If required, the center of the EMS can be used as a single point estimate. The prediction and correction
step calculations are as follows.

2.1.1 Prediction step

An ellipsoid which is a tight outer-bound to the vector sum T} can be determined using trace minimiza-
tion. In particular, from [17, Theorem 4.4] it follows that an ellipsoidal outer bound to T can be given
by E(xgx—1,Prlk—1 sz‘k,l), where

Xpj—1 = Ax—1Xk—1,
P = (1—po) A1 PecrAf_ + (071 pi) ™' W, “4)
Gk2|k—1 =01, (5)

-1
and py = /Tr(Wy) <\/sz|ler(Ak1Pk1A,{_l) + Tr(Wk)> . Tr(M) denotes the trace of matrix M.
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2.1.2 Correction step

Let V be the lower triangular matrix obtained by Cholesky factorization V' = V.V, . Then, the set Sy
can be expressed as Sy = {x € R" : ||y, —Cyx||> < 1}, where , = V,{yk and Cy, = V,{Ck. It can be shown
that (see [3] and references therein) a class of ellipsoids parameterized by 0 < A; < 1, that outer-bounds
the intersection (&g, Prje—1, Gk2|k71) NSy is given by E (&, Py, 07), where

A 2 ~ T
X = X1 + APy Cr O
1 o
Pi= q(l—lkl’ﬂk—lck 0 'Co)Pyy-1,

sz = (1 — Ak)sz\kfl + A — lk(l —ﬂ,k)SZQI?lsk,

and we have defined 8; =y, —(_,'kfck|k,1, G, = (_kak|k,1(:‘,{, and Oy = (1 — 4 )I + 4Gy Note that §; can
be considered as a prediction error. It is not simple to determine A; using determinant or trace criteria.
Following [3, Theorem 2] we can find A; such that an upper bound to the determinant or the trace is
minimized. The corresponding A; value is given by

0 if 8¢ < 1- 07,
Af = 5(1=B) if g =1
X _
§ {1— Bkl ity >0
1 —gk Vi

where g is the norm or the maximum eigenvalue of Gy, and we have defined v, = 1 + B¢ (1 — g;) and
B =(1— G]f‘kfl)(S,sz)*l. Clearly if 4 = 0, 0Py = sz\k,lpk\k—l, and the correction step will not
change the ellipsoidal set for xi, already obtained in the prediction step. The interpretation is that the
observation y in this case does not contain sufficient innovation to refine the predicted EMS. This is the
data-selective property of the correction step.

2.2 Extension to nonlinear systems
Consider the nonlinear dynamical system given by the general state-space model,

k=l 1) +w, (6)
Yie = hixi) +}, (7

where both f and & are assumed to be differentiable nonlinear functions with continuous first derivatives.
Prediction Step :

As before, let the EMS for the state vector computed at time k — 1 be E(&;_1,Pi_1, szil). The Taylor
series expansion of f(x;_;) about the center £, of this EMS is given by

FOx—1) = fRr1) +F (Re—1)ex—1 + €r(ex—1), (®)
_ R _ 9df) — .
where e, = x4 — X1, F(x) = 3 and &f(ex—1) denotes the terms involving the higher order
x

derivatives. Plugging (8) into (6) we obtain a state equation, linearized about the center of the ellipsoid
E(&—1,Pi—1,07_,). given by

X =Ap 1 (1 —Xp—1) + f (Fe1) +wx, 9

where we have defined Ay_; = F (%) and wy, = w} + €¢(ex_) is the effective noise vector which also
includes the error resulting from linearization. Let E(0,W,,1) be the EMS for w;. We now note that,
given the EMS for x;_; whose center is 1, (9) can be used to find a prediction for the membership set
for x;. This is the vector sum of two sets, given by ’]I"k =U; ®E(0,Wy, 1), where Uy is the elliposida51



set obtained by translating the origin-centered ellipsoidal set Ay E(0,P;_1, 61(27 1) to the center f(Xx_1).
While T, itself is not ellipsoidal, using the results from the Section 2.1.1} it is straightforward to verify
that an ellipsoidal outer bound for T}, is E (&1, Pxx—1, sz‘ v_1) WithXg_1 = f(&x_1), is given by (4) and
(B) respectively. Note that, in this case the shape matrix W of the noise vector wy must be determined
by using suitable bounds for w), in (6) as well as £/(e;_1).

Correction Step :

Using arguments similar to those in the previous section, we can linearize about the center of the
predicted EMS E(&y;—1,Pri—1, sz| 1) to obtain

Vi = Crlxx — Rige1) + hRe—1) + v, (10)
dh(x)

where we define C; = and vy is the effective noise vector which also includes the lin-

X=Rpr—1
earization error. Now, by defining y, =y, +C WXk k—1 — h(fck‘ k—1)s We can convert li into the same form
as (3). Thus, the correction step in this case can also be performed exactly as in Sec. 2.1.2]

3 SIMULATION RESULTS AND DISCUSSION

In this section, we investigate the performance of the E-SMF state estimator described in Sec. [2| through
simulations. The example considered here is a SMIB system based on the system in [4}, Fig. 5.2],
which is shown in Fig. [I] As the generator G, we have used the constant flux linkage model for a

Line 1 M~ Line 3
Line 2 AN ~r X,
R X1
Infinite Bus

Figure 1: Experimental test set-up- SMIB system.

synchronous generator which includes the effects of the sub-transient circuit with one d-axis and two
g-axis amortisseurs. The first order non-linear differential equations describing this model in dg frame
are given by [4, 13.22-13.31]. After converting these continuous time equations to discrete-time, we
can obtain the state space model given by and (12). In these equations, & is the rotor angle, A® is
the rotor speed variation in per unit, @y = 27 fo where fo = 60 Hz is the base angular frequency, ¥y,
is the flux linkage in field winding, 4 is the flux linkage in d-axis 1 amortisseur winding, v, is the
flux linkage in q-axis 1* amortisseur winding, Yy, is the flux linkage in g-axis 2" amortisseur winding,
T, is the real power output of the machine, Ey, is the field voltage supplied to the machine, 7,, is the
mechanical torque input to the machine, H = 3.5000 MWs/MVA is the inertia constant, and D =5 is the
damping factor. The other variables are defined in table|l] and we have defined

T, = eqiq + e4ig, eq = Egsin(8) — Ecos(9), eq = Esin(8) + Egcos(6),
E /R . X// e . X// ¢
eg =L lq = afl<wd+w]d)—({,, Ig = Lﬁf](%q%-%q)%—‘,i,-
Xad Xd de X]d Xd Xq qu qu Xq

Note that Eg and E; are the real and imaginary components of the terminal voltage and calculated with
respect to the common reference frame. The inputs to the state estimator are Erg4, T, Ej and Eg.
3.1 Numerical Results

The performance of the state estimator is measured by the time-averaged mean square error (MSE) given
by
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Table 1: Generator data and line data.

Symbol | Definition ‘ Value (per unit)
R, Stator resistance 0.0030
X Stator leakage reactance 0.1500
X, | D-axis unsaturated synchronous reactance 1.8098
X, | Q-axis unsaturated synchronous reactance 1.7599

; D-axis unsaturated sub-transient reactance 0.2296
X; Q-axis unsaturated sub-transient reactance 0.2500
Xrq | Field leakage reactance 0.1634
X14 | D-axis 1*" damper leakage reactance 0.1713
Xi4 | Q-axis 1" damper leakage reactance 0.7252
Xo, | Q-axis 2% damper leakage reactance 0.1250
Ryqs |Field resistance 0.00059938
Ry, |D-axis 1*" damper resistance 0.0284
Ri; |Q-axis 1 damper resistance 0.0062
Ry, | Q-axis 2% damper resistance 0.0237

R Line 1, 2 resistance 0.1250
X1 Line 1, 2 reactance 0.6250
X5 Line 3 reactance 0.1250

where E(-) is the statistical expectation operator, x; = (x] . . .xmk)T is the state vector, X = (£ ¢ .. .)En’k)T
is the estimate, and K is the duration of a simulation run in time steps. In obtaining the experimental
results presented below, the statistical expectations have been estimated with Monte-Carlo trials over 100
different realizations of noise vectors.

It has been assumed that both wy = (w4, ... ,w67k)T and vy = (vi g, vz,k)T are uniformly distributed vec-
tors, where w;x € [-107°,1073] for i = 1,...,6, vix € [~0.005,0.005], and v, € [-0.05,0.05]. The
values for the wy intervals are found by trial and error and the v intervals are based on 10 dB signal-to-
noise ratio. In the case of SMF algorithm, the shape matrices of ellipsoidal sets for w; and v; have been
estimated using the interval bounds as described in [14]. We also compare the performance of the SMF
with the conventional EKF [20]. In the case of EKF, the corresponding noise co-variance matrices have
been derived by assuming that above intervals correspond to four standard deviations. In simulations,
which have been carried out in Matlab, a time step of 1 ms and a measurement interval of 10 ms have
been used. These values were chosen based on the assumption that the terminal voltage and angle at the
machine bus are available at every 0.01 s, which corresponds to a PMU rate of 100 samples/s.



Table 2: Normalized time-averaged MSE during the two faults.

State Fault 1 Fault 2
EKF (10°°) | SMF (10°) | EKF (107°) | SMF (10™°)

es, 0.1967 0.1968 0.0641 0.0396
e, 0.0003 0.0007 0.0001 0.0001
ey, 0.2889 0.3382 0.0137 0.0190
ey, 0.3648 0.4084 0.0432 0.0446
ey, 0.2631 0.2049 0.1029 0.0525
ey, 0.5855 0.5516 0.2416 0.2011

In order to test the SMF algorithm, we carried out the following experiment. First, a bus fault is applied
at the infinite bus of the SMIB system operating in steady state. The fault is then cleared and the system
is allowed to return back to the steady state. Next a balanced fault is applied at the mid point of Line 2.
This experiment allows us to observe the ability of the SMF algorithm to track the system state under
steady-state conditions without requiring any correction-step updates (thus, for example, ignoring PMU
measurements), while maintaining accurate tracking during a fault using frequent correction steps. The
estimated states and the exact system states before, during, and after the two fault events are shown in
Fig. 2] Also shown are the states estimated by the conventional EKF algorithm. In this experiment as
well as in other experiments, it was observed that the tracking performance of SMF is very similar to that
of EKF. Comparison of the normalized time-averaged MSE during fault conditions for the algorithms
are presented in Table[2]
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Figure 2: Comparison of state estimates.

It has been observed that the SMF algorithm carried out the complete correction step on the average
only 31.1% of the time during 1* fault and on the average only 42.2% of the time during 2"¢ fault. This
indicates that more than 50% of the time the predicted state needs no updates even during a disturbance.
However, the estimation result obtained from the SMF algorithm is comparable to that of EKF. Fig [3]
(A) shows the normalized average correction steps variation over the time. Also it has been observed
that after initialization, the SMF algorithm performs the complete correction step until the steady-state
is reached, after which no correction steps are required until a disturbance occurs. This indicates the
applicability of the SMF for event-triggered state estimation in the context of power systems.

In order to investigate the impact of inevitable modeling errors on the performance of the SMF, +p%
error has been introduced to X'/, and Xq” in the equations used in state estimator. Even a parameter error
of 1% has a significant impact on the normalized time averaged MSE of estimates which is in the range
of 1072. Due to the introduced modeling error, the SMF state estimator takes more time to converge and
also results in more than 10% increase in the normalized average correction steps during the disturbance
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Figure 3: Normalized average of correction steps as a function of time.

as shown in Fig 3| (B).

Further, if the modeling error is above +5% the advantage of event-triggered state estimation is lost. Fig
|§| (C) and (D) shows the variation of the normalized average correction steps when the modeling error is
+5% and +10% respectively. The normalized time averaged MSE of estimates will also increase making
the estimation obsolete in both the SMF and the EKF algorithms.

4 CONCLUSION

It has been shown that the SMF algorithm with a selective correction step does not create any adverse
effect on state estimation in comparison with the KF algorithm and the complete correction step calcu-
lation was required only during a small fraction of time. The SMF algorithm can be implemented at
the local estimators in the MASE context. Then in the event of a state change, the SMF algorithm can
identify it based on its data selective capability. This can be used as a criterion to send the state infor-
mation to the centralized estimator for further processing. Consequently, this will significantly reduce
the communication overhead in power systems with PMUs. However, it has been demonstrated that the
modeling error will seriously degrade the estimation accuracy. This is an issue that has to be addressed
in future work.
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