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SUMMARY

Hydro One partnered with the Electric Power Research Institute (EPRI) in collaboration with the
manufacturer Southwire Co. to develop a transmission line sensor project to collect direct measured
parameters from line sensors in order to compare with theoretical thermal models.

The purpose of this paper is to validate the existing AMPAC line rating application against the model
of the IEEE standard 738-2006 “IEEE Standard for Calculating the Current-Temperature of Bare
Overhead Conductors”, and a modified version of the IEEE 738-2006 and AMPAC program
designated as “hybrid” model. A vigilant sensitivity analysis on the main parameters used in these
applications is essentially required. The intention is also to verify correctness of the Hydro One
thermal model techniques for real time applications.

The methodology adopted in the study is to analyse and choose an optimized ampacity calculation
method for different aerial conductor types under various weather conditions. Ampacity for different
conductors is initially calculated using IEEE 738 and AMPAC algorithm using data provided by line
sensors. Then, ampacity for same conductors is determined based on Hydro One predefined weather
data such as wind speed, wind angle and ambient temperature. Finally, the results for each method are
compared using statistical and sensitivity analysis.

The study also identifies the discrepancies between both algorithms by comparing the calculated
ampacity under the same weather conditions based on field measurements such as temperature, wind
speed and angle, solar radiation, and current through conductor, and proposes a new “hybrid” model
that can be implemented for real time applications as well as for future ampacity calculations. High
speed of the proposed “hybrid” model was verified to work in on-line monitoring systems and web
applications without compromising system operation flexibility and outage planning.

The paper concludes that the “hybrid” algorithm determines an increased ampacity of approximately
3% to 6% on the existing 2250 high voltage transmission circuits at Hydro One for continuous and 15-
minute thermal ratings. Therefore, an increased ampacity rating has the potential to increase the
capacity of existing lines, determine considerable savings for future transmission expansions and defer
expansion investment and generate more revenue on the existing installed equipment base.
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1. INTRODUCTION

Ontario Hydro developed original Monograms to determine thermal ampacity to operate bare
overhead conductors at Continuous ratings (initially 49°C) and Emergency ratings (limited to 90°C)
and considering annealing, since 1953.

The first version of the in-house developed software to calculate thermal ratings on aerial conductors,
named AMPAC, was implemented circa 1980.

In 2014, Hydro One partnered with The Electric Power Research Institute (EPRI) in collaboration with
the manufacturer Southwire Co. to develop a transmission line sensor project in order to collect direct
measured parameters from line sensors and weather stations in order to compare and validate thermal
models based in the IEEE standard 738-2006 and Hydro One’s AMPAC program.

The new AMPAC/IEEE 738-2006 hybrid algorithm has being successfully implemented for real time
operation in Hydro One in 2019.
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Fig. 1 AMPAC/IEEE 738-2006 hybrid model evolution

2. HYDRO ONE AMPAC and IEEE 738-2006 THERMAL MODEL DIFFERENCES

The main difference between both algorithms occur in several three areas [2]:
1. convection heat loss,
2. radiation heat loss,

3. solar radiation.

The AMPAC algorithm used theoretical principles of convective heat transfer by discretely calculating
all air parameters (density, specific heat, expansion coefficient, viscosity) as well as Grasshof, Nusselt
and Reynolds numbers. The new AMPAC algorithm, although based on the same principles, uses
simplified formulas and parameters determined in experiments [2].

There is a difference in the implementation of the new AMPAC/IEEE 738-2006 hybrid algorithm. The
biggest impact on the performance of the program have the numerical methods which are responsible
for iterations required to take into account interactions between heat transfer and heat generation,
namely variation of the resistance with the temperature [2].
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Table 1 AMPAC and IEEE 738-200 thermal model

3. EPRI/SOUTHWIRE LINE SENSOR PROJECT

A total number of twenty six line sensors and three base stations were installed at three different
Hydro One sites covering eight 115 and 230 kV transmission circuits across Ontario during 2015 and
2016. Telemetered values from line sensors and base stations were sampled every 5 — 6 minutes and
transmitted to a Southwire stand-alone server. Southwire hosted the data and provided visualization to
Hydro One through a secure web portal with regular data updates on a monthly basis.

While the performance of all of the base stations was satisfactory, the proto-type design of the line
sensors performance showed high rate of failure of approximately 30% (defective 8 out of 26 sensors).
Southwire identified some defects during the sensor installation as contributing factor.
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Fig. 2 Line Sensor Project Overview

Fig. 3 Line Sensor Project Schematic

4. HYDRO ONE NMS (SCADA) and SOUTHWIRE SENSOR COMPARISON

SW Sensor & NMS (IS&R) Line Current
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Fig. 4 Line Current Comparisons

Line sensor current profile match with NMS telemetry records, but the deviation at each circuit is not
consistent. Post-installation precise iterative calibration is warranted.

SW base station & NMS Weather data Wind Speed
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SW base station & NMS Weather data Wind Speed
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Fig. 5 Wind Speed Comparisons

Wind speed is not uniform over the entire line, its distribution is geographical terrain dependent. It is
hollow to compare measurements recorded at different locations.




SW base station & NMS Weather data Ambient Temp
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Fig. 6 Ambient Temperature Comparisons

The telemetered ambient temperature by the line sensors reasonably match with weather info from the

nearby airports available in NMS.

5. HYDRO ONE AMPAC POLICY ON WIND SPEED AND WIND ANGLE

Verdicts on policy of 4 km/h Wind Speed
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Fig. 7 Policy of 4 km/h Wind Speed Considerations

Verdicts on policy of 20° Wind Angle
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Fig. 8 Policy of 20° Wind Angle Considerations

Field measurements confirmed appropriateness of Hydro One policy of wind speed of 4 km/h and

wind angle of 20° for thermal calculations.




6.

SENSITIVITY ANALYSIS IN PLANNING FRAMEWORK

Conductor

150 C or Sag temperature
P

127C or Sag when circuit loaded at

Long-term Emergency Rating ~— |

[

% A Conductor Temperature Variations
H Under Key Loading Values

g for Given Ambient Conditions

@D

2

STE = 1220A

circuit loaded at —__/
Continuous Rating

P

93C or Sag when /

Temperature rise when circuit loaded
at Short-term Emergency Rating

-~

I CONTINUOUS = 840A F—

Note: Amp values are typical
values for 705 kemil conducter

Time

A

\

\ Beginning of ‘short-term’ period
“~—(e.g. inception of contingency)

15 minutes

Fig. 9 Planning Criteria for Continuous and Emergency Thermal Ratings [3]

The following sensitivity analysis using IEEE-738 algorithm was performed to verify consistency with

Hydro One planning criteria for continuous and emergency thermal ratings of bare overhead

conductors.
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Fig. 11 Ambient Temperature and Solar Radiation Sensitivity




7. AMPAC/IEEE 738-2006 HYBRID MODEL IN REAL TIME OPERATION

Deviations between the AMPAC/IEEE 738-2006 hybrid and the old AMPAC algorithm were studied
on 2250 main circuit sections that Hydro One operates at 115kV, 230 and 500 kV.
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Fig. 12 AMPAC/IEEE 738-2006 Hybrid vs. AMPAC Histogram and Contingency Analysis

e The new AMPAC/IEEE 738-2006 hybrid evaluates higher values for continuous ratings
approx. 3 to 6 % than AMPAC for most of the lines.

e The new AMPAC/IEEE 738-2006 hybrid evaluates higher values for 15 min ratings approx. 2
to 5 % than AMPAC for most of the lines.

e Contingency Analysis performed in critical HV circuits demonstrate that the hybrid algorithm
would have negligible impact on thermal ratings of circuits that have already thermal
constraints.

8. CONCLUSIONS AND RECOMMENDATIONS

e Reaffirmed Line rating Parameters are interdependent and have complex relationships.

e Annealing consideration dropped in late 70s that enabled higher maximum conductor
temperature limits.

o Weather parameters measured at different locations are difficult to validate, and the
geographical terrain dependencies govern the wind speed and angle.

e Retain Hydro One policy of considering Wind Speed as 4 km/h, and Angle as 20°.

e Revisit planning ratings guiding principles to increase ambient temperature (summer) from
35°C to 40°C due to global climate change.

e Pre and post contingency, monitor total number of hours lines are loaded at 75% or over of
their continuous rating and have max conductor temp of 93°C.

e Initiate a comprehensive research on Annealing for the usage of max conductor temperatures
up to 150°C for continuous rating and considering in particular conductor aging and its life
expectancy.

e Conductor snapping incidents should be examined from Annealing standpoint.

e Continue investigating the impact of weather assumptions to improve accuracy of thermal
ratings calculations.
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