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1. Introduction

• Voltage stability is the ability of a power system to restore an acceptable steady state 

voltage at all the buses after the system been subjected to a disturbance [1].

• Short-term Voltage Stability (SVS) occurs within few seconds after the initiation 

disturbance. 

• Modern power systems encounter more SVS issues due to:

❖ Increasing demand of dynamic loads (eg: induction motors, power electronic loads) 

❖ High penetration of Inverter Based Resources (IBR) [1]-[4]. 

• Therefore, researchers have attempted to develop techniques to assess SVS status 

using real-time measurements.
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1. Introduction

• Approaches for SVS status assessment:

❖ Control theory based

❖ Voltage curve based

❖ Stability boundary based

❖ Machine Learning (ML) based

• ML-based classification models show promising results

❖ However, to use supervised learning, a large set of training data in the form of inputs 

and the corresponding output is required.
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1. Introduction

• Problem statement: Label generation according to domain knowledge by an expert 

is a cumbersome process which inevitably consumes significant amount of 

engineering time, and it may cause human errors while labeling.

❖ Note that data labeling differs from real time SVS status prediction 

❖ Data labeling is an off-line process and can use longer observation window to determine 

SVS status 
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1. Introduction

• Hypothesis: A semi-supervised learning algorithm can be adopted to generate labels 

where unlabeled data instances can be labeled using a small portion of labeled data 

instances as a guide. 

• Aim: Make the label generation more efficient and accurate.

• Proposed Approach: Application of a graph based semi-supervised learning 

algorithm named “Label Propagation” with multiple features indicating SVS status.
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2. Label Generation for SVS Assessment

• The voltage trajectory after a disturbance could 

be a:

a) Fast voltage recovery

b) Fault Induced Delayed Voltage Recovery 

(FIDVR)

c) Sustained low voltage without recovery

d) Fast voltage collapse 
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3. Proposed Automatic Label Generation Scheme 

Step Task 

Step 1 Initial database generation (with a small portion of labeled data)

Step 2 Computation of candidate input features

Step 3 Perform label propagation (semi-supervised learner)

Step 4 Generate a fully labeled database 

Label Propagation

Stable Nodes

Unstable Nodes

Unlabeled Nodes

Initial Database

Labeled

Unlabeled 

Input Feature Computation

Input feature 1 calculation

Input feature 2 calculation

Final Database

Labeled

Labeled

Step 1 Step 2 Step 3 Step 4
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3. Proposed Automatic Label Generation Scheme 

3.1 Initial data base generation

• Dataset contains time series of bus voltage magnitudes of test system for different 

disturbances under different operating conditions.

• Dataset should cover all credible contingencies and credible operational conditions.  

• In this study, 700 voltage trajectories under different conditions were generated using 

automated PSSE® dynamic simulations.

• Afterwards, a small portion of voltage trajectories are labeled manually by observing the 

plots of voltage trajectories. 

• The labeled data instances have logical variable which indicates whether the data 

instance is stable, or unstable (-1 for unstable / 1 for stable) and unlabeled data 

instances have null values as the logical variable.
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3. Proposed Automatic Label Generation Scheme 

3.2 Input Feature Computation

(a) NERC Contingency Severity Index [5]
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3. Proposed Automatic Label Generation Scheme 

3.2 Input Feature Computation

(b)  Lyapunov Exponent [6]

• The Lyapunov Exponent (LE) is adopted from ergodic theory. LE has the potential to 

determine the chaotic nature of the system at any moment by analyzing the rate of 

divergence of the relevant dynamic system variables.
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3. Proposed Automatic Label Generation Scheme 

3.3 Semi-supervised Label Propagation

• Label Propagation is a graph based semi supervised learning algorithm [7].
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3. Proposed Automatic Label Generation Scheme 

3.3 Semi-supervised Label Propagation (example)

• Assume an initial graph with nodes a, b, c, d and e. Node a and e are labeled with class 

“red” and “green” which are numerically represented by “-1” and “1” respectively and 

other nodes are unlabeled. 

• The respective P values are denoted on each vertex. P values of nodes which are not 

connected are assumed to be negligible.
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4. Case Study

Test System

• IEEE 32 bus Nordic test system [8]. 

• Dynamic loads such as induction 

motors are the main contributor of 

short-term voltage instability after 

faults [9]. 

• Therefore, some of the static loads 

at random locations were replaced 

by dynamic loads. 

• In this study, Complex Load Model 

or CLOD was used as the dynamic 

load model [10]. 
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5. Results

• All 700 data instances were labeled manually for the purpose of validation.

SVS Indices used as input 

features

TA (%) under different 

percentages of labeled data

10% 20% 30%

NERC CSI (SIv & SIt) 80.6 82.5 82.8

Lyapunov Exponent () 94.4 98.5 98.5

All indices (SIv ,  SIt & ) 98.2 99.5 99.5

𝑇𝐴 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑙𝑎𝑏𝑙𝑒𝑑 𝑑𝑎𝑡𝑎 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑑𝑎𝑡𝑎 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
× 100% 
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6. Conclusions

• The results show that the proposed automated data labeling approach can more 

accurately label the input data compared to labeling data using a single indicator such as 

SIv ,  SIt or .

• When the percentage of manually labeled data instances increases, the accuracy of 

labeling process has increased. 

• Furthermore, when all the indices are considered as input features the level of accuracy 

increases since the contribution of each index will be ensembled. 

• In this study, using three SVS indices (SIv ,  SIt & ) as input features, labels are  

assigned with an accuracy of 99.5 % when only 20% of the data are manually labeled. 

• This semi-supervised learning process can be used for other applications, for example to 

screen the results of automated contingency simulations done for large networks which 

are currently done manually.
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