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SUMMARY 

Transformers are the most expensive single pieces of equipment of an electric power system, and their 
failure considerably impacts power network performance. Partial discharges (PD) are local electrical 
discharges that might happen inside the insulation of transformers. Prolonged exposure to PD has 
detrimental effects on the integrity of a transformer's insulation system. As such, the detection and 
localization of PDs have been considered as one of the monitoring methods to ensure the reliable 
operation of transformers. Localization of PDs in transformer winding is more complicated than the 
detection of the occurrence of PDs. Machine learning techniques have been employed to analyze the PD 
signals, but the feature extraction process is always challenging. These techniques require the experience 
of experts and yet, in some cases, are not able to determine the exact location of PD. In this paper, to 
automate feature extraction, a combination of wavelet transform, a sparse autoencoder (SAE) and a 
logistic regression, one-vs-all classifier was employed to localize PD in the transformer winding. Using 
the SAE, no feature extraction analysis is required, which allows more accurate detection of PD location 
in transformer windings. A detailed high-frequency winding model is needed to construct a robust 
classification model. This winding model should properly simulate PD signal propagation in transformer 
windings. The axial multiconductor transmission line (AMTL) was used for the simulation of 
transformer winding that takes the variation of the turn radius into account. A continuous winding with 
several sections, each consisting of a number of turns, was simulated. The middle turn was selected at 
each section to inject the PD pulse signal. The PD signals were simulated by Gaussian pulses with a 
fixed peak and variable rise time. The injected signals propagated through the winding and were 
recorded at the grounded end of the winding. The PD pulse current measured at the ground terminal was 
used as raw data for the proposed classifier model. After hyperparameter tuning, the model could 
localize the PD signals with 99.1% training and 97.9% test accuracy. 
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1. INTRODUCTION 

A typical transformer is comprised of two main windings and a magnetic core. Winding failure is 
the main cause of power transformer disruptions [1]. In the study of failures in transformer winding, 
partial discharge (PD) localization has been an increasingly important area. One of the main obstacles 
for PD localization is the lack of easy access to the internal turns of windings. Hence, finding a 
correlation between a measured PD pulse (for example, at the ground termination of the winding) and 
its location in the winding plays an essential role in addressing the issue of transformer failure. Attempts 
have been made to detect PD within transformers, including acoustic, ultra-high frequency (UHF), and 
electrical methods [2]. In [3], the winding transfer function has been used for the localization of PD. 
Since this method is sensitive to noise, the performance can be significantly influenced in a noisy 
medium. Reference [4] presents a Kullback–Leibler divergence method that calculates the divergence 
between the PD signal and the reference signal of each location. The least divergence value determines 
the location of PD. Another approach is based on calculating the correlation coefficients between the 
PD signals and reference signals [5]. The dependency of these methods to reference signals prevents a 
fast response, which is not desired for online applications. Some studies, such as [6], suggest condition 
monitoring of transformers due to faults in the winding by using thermal images acquired from the 
exterior of the transformer, which is not practical for PD localization. 

This research proposes a simulation model to tackle the problem of PD localization. The first step 
involves a propagation model to generate a PD pulse dataset. Since the nature of PD signals is associated 
with fast-rising pulses, a high-frequency distributed model is required to accurately simulate PD pulse 
propagation along transformer winding [7]. Previous studies demonstrated that among the proposed 
winding models, the multiconductor transmission line (MTL) approach offers the widest bandwidth [7], 
[8]. A modification of the MTL-based models, the so-called axial multiconductor transmission line 
(AMTL) model, has been proposed in [9], where the variation of winding radius in each section is 
considered. Given its accuracy, this is the model employed for PD pulse propagation analysis in 
transformer winding in the present research.  

The next step for PD localization is to analyze the propagation of PD pulses along the transformer 
winding. Several machine learning (ML) techniques have been employed for this purpose [7], [11]. 
These techniques sometimes suffer from overfitting and cannot be generalized to other transformer 
types, which results in repeating procedures. Hence, the feature extraction process is always a serious 
challenge faced by ML algorithms. The distribution of energy values has been used in [10] as PD signal 
features, and in [12], the permutation entropy of the PD signals is proposed as a feature. Four types of 
features were extracted and compared in [13], including statistical parameters, statistical parameters 
from wavelet transform, energy parameters from wavelet transform, and cross wavelet transform (XWT) 
parameters. These methods cannot be conducted without experienced experts and, in most cases, are not 
able to find the exact PD location. Deep learning (DL) techniques can overcome this issue by eliminating 
the need for hand-crafted feature extraction. However, the main drawback of such approaches is that 
they require a large dataset which is not feasible in all transformers. Furthermore, online and real-time 
monitorings are inconvenient due to their computational complexity. Finally, they are prone to 
overfitting because of a high number of hyperparameters in the model. 

In this study, the hand-crafted features are substituted by those extracted using a sparse autoencoder 
(SAE). Furthermore, a combination of the common types of features available in the literature is 
investigated, and the results are compared with those by the SAE. The structure of the paper is as follows. 
Details of transformer winding modelling using AMTL is discussed in Section 2.1. The procedure of 
generating PD signals is proposed using a Gaussian waveform in Section 2.2. The approach of collecting 
the PD dataset and feature analysis is given in Sections 2.3 and 3, respectively. Wavelet transform is 
introduced as a tool to improve the feature analysis. Different scenarios for extracting the features from 
the wavelet transform of the PD signals are investigated. Finally, a logistic regression, one-vs-all 
classifier is employed to classify PD signals. That is to determine the location of PD in the winding.
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2. PD PULSE PROPAGATION SIMULATION 

2.1. Transformer Winding Model 

In this work, an eight-disk winding with 128 turns (16 turns in each disk) was selected for modelling 
using the AMTL approach [9] (see Figure 1). Employing the AMTL for transient analysis of transformer 
winding, each turn was considered as a conductor of the multiconductor transmission line. In a typical 
MTL formulation, the main assumption is that the differences in the turns’ length are negligible, so all 
transmission lines have the same length. However, in the AMTL approach, the transformer winding is 
modelled in a cylindrical coordinate system, and the length of the winding turns is not constant anymore. 
The first step of developing the AMTL simulation model was to determine the per-unit-length (PUL) 
parameters, i.e. the PUL inductance, capacitance, resistance, and conductance matrices. Each PUL 
parameter was represented as an 𝑛 × 𝑛 matrix where 𝑛 was the number of turns (𝑛 = 128 in this work). 
To calculate the PUL capacitance and inductance matrices, finite element method (FEM) solution of 
electrostatic and magnetostatic problems was employed using a commercial software. Since this paper 
deals with high-frequency signals, the transformer core and tank can be assumed perfect electrical 
conductors (PEC) with high accuracy [14]. For each of the eight sections, the middle turn was selected 
for the injection of the PD signal, i.e. the possible locations for the PD source would be turns 8, 24, 40, 
…, 120, which were labelled as classes 1, 2, 3, …, 8. The PD signal source was modelled as an ideal 
current source with a Gaussian waveform (see Section 2.2). The end of the last turn of the transformer 
winding was grounded via a small resistance, while the other end of the winding was open circuit. 

2.2. PD Pulse Simulation 

Each PD signal was represented by a single Gaussian pulse with a specified peak and rise time [15]. 
The rise time can be influenced by the PD source and the insulation type. However, the PD pulse is 
typically measured at a location far from its source. In this work, the peak of the injected PD pulse was 
considered to be constant, and variability of the data for each class was achieved by varying the rise time 
in the range of 0.5 ns to 10 ns. The Gaussian pulse is defined as 

 𝑖(𝑡) = 𝐴𝑒!(#!#!)"/&" (1) 

where A is the magnitude of the current and 𝑡! and 𝛼 determine the centre time and the rise time of the 
injected PD pulses. Heidler’s function can also be a good representation of PD signals since, unlike the 
Gaussian function, it has different values for the rise time and the fall time [16]. 

2.3. PD Dataset 

The Gaussian pulse was injected into the locations identified in Section 2.1, assuming 20 different 
rise times, starting from 0.5 ns to 10 ns with a step of 0.5 ns. An amplitude of unity was assumed for the 
injected PD pulse in the simulation. Changing the rise time as well as the location of the PD source 
provides the variability for our classification model. To simulate the PD signal measured at the ground 
connection of the winding, finite-difference time-domain (FDTD) analysis was employed. More details 
on the FDTD technique used for the simulation of the MTL system can be found in [17]. The simulation 
was conducted with a time step of 0.3 ns. The current of the last turn, the grounded turn, was stored in 
each time iteration as an output. 

3. FEATURE ANALYSIS 

3.1. Wavelet Transform 

PD signals contain high-frequency components associated with a typical rise time of a few 
nanoseconds. This implies that the high-frequency components of the measured PD signals contain 
effective information about the PD source. In such cases, the wavelet transform of the signal can improve 
the interpretability of the data as it maps time-domain PD signals into two groups of coefficients. Unlike 
the Fourier Transform that provides frequency-domain information only, the wavelet transform 
represents the PD signal in both time and frequency domains. In other words, using the wavelet 
transform, not only the frequencies of a signal but also the time of occurring can be determined. 
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Continuous wavelet transform (CWT) and discrete wavelet transform (DWT) are the two types of 
wavelet transform. In this work, DWT is used as it is computationally less expensive. The other 
drawback of CWT is producing redundant data. DWT can be considered as a filter bank that applies a 
high-pass and low-pass filter to the signal at the so-called decomposition levels and represent the signal 
as two arrays of approximation and detail coefficients. The approximation and detail coefficients are 
associated with the low-pass and high-pass filters, respectively. The two factors that should be 
considered for using the wavelet transform are the mother wavelet and the level of decomposition. 
Daubechies mother wavelet ‘db7’ has been suggested as a suitable candidate for wavelet analysis of PD 
pulses [18]. To determine the optimum level of decomposition, reference [4] proposes the maximum 
Shannon entropy using the energy of the approximation and wavelet coefficients. The maximum entropy 
defines the optimal decomposition level. Figure 2 shows the median of Shannon entropies for each 
decomposition level calculated using the PD pulses simulated by the AMTL model. It is observed that 
decomposition level 9 has the highest values overall. Thereby, it is chosen as the decomposition level in 
this work.  

3.2. Feature Extraction 

The accuracy of the classification model is directly influenced by the type of extracted features. 
Hence, precise feature analysis is required prior to classification. Traditionally, these features would be 
specified manually based on user experience and expertise. Such approaches can be time-consuming, 
and no one can guarantee that the selected features are the best types of features. However, an automated 
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Figure 1. (a) Schematic of 2D cross section of the winding and (b) and 3D split view. Two sample 

current waveforms recorded at the ground terminal when the PD pulse is injected at (c) location 1 and 
(d) location 8. 
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alternative method can be feature extraction using an SAE [19]. In an SAE, the number of input and 
output nodes are equal, and the model should learn to optimize their similarity. The number of nodes in 
the hidden layer represents the number of features (see Figure 3) [19]. The hidden layer is calculated by 
passing the linear combination of the input layer z through a sigmoid transfer function defined as 

 ℎ(𝑧) = !
!"#!"

 . (2) 

The output layer is constructed using a similar procedure. 

The performance of this approach is compared with that derived from manual feature extraction 
later in this study. For this manual feature extraction, the features selected as the input of the 
classification model are categorized into three groups [10-13]:  

• The energy of wavelet coefficients, 
• Statistical parameters of wavelet coefficients, and 
• Permutation entropy of wavelet coefficients, 

where the wavelet coefficients that have been used include the last level of detailed coefficients and all 
levels of approximation coefficients. The energy of the jth approximation coefficients is defined as: 

 𝐸$ =
∑&''#

$

()*#+,&''#-
 (3) 

where 𝐴𝑝𝑝" and  𝑛𝑢𝑚𝑒𝑙/𝐴𝑝𝑝"0 are the jth approximation coefficient vector and its number of elements, 
respectively. The statistical parameters employed in this work include the mean, standard deviation, 
skewness, and kurtosis [13]. The permutation entropies were calculated based on [12].  

The first step was to extract features from the wavelet transform coefficients of the current pulses. 
The wavelet transform maps each signal into a vector consisting of its 9 approximation coefficients 
arrays and the first detailed coefficients array as the input to the SAE model. The optimum number of 
features would be the optimum size of the SAE hidden layer. In order to find this parameter, the model 
was launched on the input features for a different number of nodes of the SAE hidden layer, and the 
mean squared normalized error was measured for each trained model. The mean squared error with L2 
and sparsity regularizers (msesparse) [20] was used as the loss function, and the encoder and decoder 

 
Figure 2. The median of Shannon entropies for each decomposition level calculated using the PD 

pulses simulated by the AMTL model. 

 
Figure 3. Autoencoder architecture with n input/output nodes and 30 hidden nodes. 
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transfer functions were sigmoid function . It is shown that there is a local minimum at 30 nodes. 
Furthermore, this size is not computationally expensive for the following analysis. At this point, 
msesparse reaches 0.0185 after 870 iterations. 

4. RESULTS 

Once the features were extracted, 70% of the data was assigned to the training set and 30% to the 
test set. A logistic regression, one-vs-all classifier was launched with a regularization of 0.001 and a 
maximum number of iterations of 250, as no considerable change could be seen after this iteration. The 
model could recognize the location of PDs with a training accuracy of 99.1% and a test accuracy of 
97.9% after 250 iterations. The confusion matrix and the loss function are shown in Figure 4. To 
investigate the influence of the hyperparameters, the algorithm was repeated using a different number 
of regularizations, wavelet decomposition levels, and the number of hidden nodes in the SAE. Table 1 
demonstrates the results for all the cases. No improvement in test accuracy can be seen in any of these 
modified models, for example when a value other than 0.001 was used for regularization. Regarding the 
number of features, changing the size of the hidden layer of the SAE by ±1 didn’t change the training 
accuracy, but caused the test accuracy to drop. Although the performance of this method was 
considerably high, as another method, the features were extracted manually and used as input features 
for the classification model. The same classification model was employed with the group of featured 
proposed in Section 3.2 in order to see if in any of these scenarios, the classification performance 
improves. As shown in Table 2, the performance is reduced significantly in all the cases. The 
performances of other possible combinations of features, such as energy and entropy, were even worse 
in terms of test accuracy.  

5. CONCLUSIONS  

A transmission-line-based model was used to simulate an eight-disk transformer winding. Gaussian 
waveforms of variable rise time were injected into different locations of the winding to simulate partial 
discharge (PD) that occurs at that location. One end of the winding was open-circuit and the other end 
was grounded, where the current induced in the winding was recorded. The wavelet transform 
coefficients of the recorded currents were used as input to the proposed autoencoder/classifier model. 
The SAE extracted a deeper representation of the input data by mapping them into a latent space. The 
SAE model was employed with different hidden nodes to determine the optimal number of features. A 
logistic regression, one-vs-all classifier, was then employed to localize PD in the winding. The 
classification results showed an accuracy of 99.1% for the training set and 97.9% for the test set. The 
presented method was repeated using different values of hyperparameters, but no improvement was seen 
in the accuracy of the model. The classification was conducted without the SAE as well, where the 
features recommended in previous literature were used as input to the classifier. The accuracy of training 
and testing were compared with the previous case. The comparison showed a significant reduction in 
the performance of the classifier, which indicates the performance enhancement of the automated feature 
extraction over handcrafted feature extraction. 

 
(a) 

 
(b) 

Figure 4. (a) The confusion matrix for the proposed model test set, (b) mean squared error with L2 
and sparsity regularizers (msesparse) vs the number of iterations. 
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