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SUMMARY 

 

Power systems encounter more short-term voltage instability events due to changing dynamics of the 

loads and generation. It is desirable to have a system to predict the Short-term Voltage Stability (SVS) 

status of a power system after a disturbance using a short observation window in real-time. Predicting 

the SVS status within sufficiently short time allows opportunity for activating remedial measures. 

Recent approaches to develop online SVS status prediction methods based on Machine Learning (ML) 

techniques have shown promising results. However, most of these attempts employed ML models which 

need training using time-series classifier based supervised learning algorithms. Supervised learning 

requires a large amount of data instances and these instances should be labeled as stable/unstable by 

observing the time-series voltage trajectories. Manual labeling process is cumbersome and consumes a 

significant amount of time. The objective of this study is to explore the use of a semi-supervised learning 

algorithm called label propagation to generate labels for unlabeled data instances using a small portion 

of manually labeled data instances as a guide.  

The proposed scheme is initiated by generating a database of input data (in the form of simulated voltage 

trajectories for a large number of contingencies) for which labels must be generated. These input data is 

generated by automating PSSE® dynamic simulation using a Python program. The time series voltage 

trajectories cannot be directly used as input to the label propagation algorithm. Therefore, several well-

established SVS indices based on transient energy theory and voltage curve method are considered to 

use as the input features to increase the accuracy and robustness of this semi supervised learner. In order 

to facilitate semi-supervised learning process, a small portion of the input data are observed considering 

a longer time window and the corresponding labels are assigned manually. Then, the labeled and 

unlabeled voltage trajectories are fed to calculate a set of SVS indices. These indices are used as inputs 

for a graph-based label propagation algorithm, in which the labeled data instances propagate labels to 

non-labeled data instances based on the weightages computed via input features. 

The proposed semi- supervised learning method was applied to generate labels for 700 data instances 

generated by simulating IEEE Nordic 32 bus system in PSSE®. The original test system contains static 

load models. However, dynamic loads such as induction motors are the main contributor of short-term 

voltage instability after faults. Therefore, some of the static loads at random locations are replaced by 

dynamic loads to make the simulation data more practical. Using 3 SVS indices as input features, labels 

could be assigned with an acceptable accuracy of 99.5%; the results show the labeling accuracy increases 

when the percentage of manually labeled data instances increases, and the labeling accuracy changes 

with the type and the number of input features used.  
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1. INTRODUCTION 

Voltage stability is the ability of a power system to restore an acceptable steady state voltage at all the 

buses after the system been subjected to a disturbance. Based on the timeframe, Short-term Voltage 

Stability (SVS) events extend from one second to several seconds. Therefore, SVS involves dynamics 

of loads (eg: induction motors, power electronic loads) and dynamics associated with fast acting power 

system equipment [1]. Lately, power systems encounter more Short-term Voltage Stability (SVS) issues 

than ever due to increasing demand of dynamic loads and high penetration of Inverter Based Resources 

(IBR) [1]-[4].  

Therefore, researchers have drawn their attention to assess SVS status through different approaches. 

These approaches can be categorized based on control theory, voltage curve, stability boundary and 

Machine Learning (ML). The control theory-based assessing methods are based either transient energy 

functions or non-linear dynamic approaches [13]. The Lyapunov Exponent (LE) is a well-known 

transient energy function which is used to assess SVS. This method is used in [9] to assess SVS using 

real-time PMU measurements. Bifurcation theory can be used to assess the stability of non-linear 

dynamic systems. The possibility of applying this method in SVS analysis is discussed in [8] and [13].  

Nevertheless, this method is difficult to use in real-time for large-scale power systems [11]. The most 

practical method of assessing the SVS is the curve analysis method proposed in [12]. Low computational 

burden and less execution time makes this method more favorable to real-time analysis. There are 

several approaches found in literature based on voltage curve analysis [5]-[7], [12]. These methods 

propose threshold settings based on the probable voltage trajectory at a short-term voltage instability 

event, but these thresholds are defined based on operator experiences, which will not accurate under all 

operating conditions and will be unique for a specific power system. 

In recent years, researchers have attempted to improve the SVS assessment based on ML. Various ML 

techniques are used to assess SVS ex: Decision Tree (DT) [14]-[16], Random Forest (RF) [18], Support 

Vector Machine (SVM) [17] and Artificial Neural Network (ANN) in form of Extreme Learning 

Machine (ELM) [19] and Recurrent Neural Network (RNN) [20]. The ML techniques proposed [14]-

[18] are based on analyzing time series of voltage trajectories which enable them to capture the temporal 

features. In contrast, the assessment methods proposed in [19] and [20] based on an index computed at 

different time instances which losses sequential features. 

Even though ML classification models shows promising results, these models use supervised learning 

and therefore require a large set of training data in the form of inputs and the corresponding output. The 

input data is typically generated through dynamic simulations and the output, which is referred to as the 

label, is the classification result. The label is typically manually generated, by observing the simulated 

voltage trajectory, by a human expert. Label generation according to domain knowledge by an expert is 

a cumbersome process which inevitably consumes significant amount of engineering time, and it may 

cause human errors while labeling. In order to make the label generation more efficient, a semi-

supervised learning algorithm can be adopted to generate labels where unlabeled data instances can be 

labeled using a small portion of labeled data instances as a guide. There are several approaches proposed 

in the literature [14] and [21]. However, these approaches have used simple assumption to create a 

constraint in the COP k-mean algorithm [23] which is not sufficient to generate accurate labels. 

Furthermore, the accuracy of these generated labels has not been validated.  This paper proposes a 

method to automatically generate consequence labels for the data instances of a ML training database 

for SVS assessment. Section II presents the process of label generation by observing voltage trajectories. 

In Section III proposed automatic label propagation scheme is discussed and input feature computation 

is introduced. Section IV contains the results of the case study carried out using IEEE Nordic system. 

Finally, Section V presents the conclusions. 

 

2. LABEL GENERATION FOR SVS ASSESSMENT 

When considering the SVS classification, voltage trajectories can be categorized under fast voltage 

recovery, Fault Induced Delayed Voltage Recovery (FIDVR), sustained low voltage without recovery 

and voltage collapse associated with rotor angle instability. In both fast recover and FIDVR scenarios 

eventually all the bus voltages are recovered to an acceptable voltage level. Therefore, those scenarios 

are considered as stable.  On the other hand, if all the bus voltages cannot recover to an acceptable 

operating equilibrium point, system will be considered as unstable. Therefore, scenarios such as voltage 
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collapse and sustained low voltage without recovery scenarios are considered as unstable [20].  Figure 

1(a) illustrates a sustained lower voltage scenario and Figure 1(b) shows the voltage collapse scenario 

followed by a rotor angle instability. Therefore, during manual data labeling voltage trajectories with 

similar to fast recovery and FIDVR are labeled as stable and voltage trajectories showing sustained low 

voltages without recovery and voltage collapse are labeled as unstable.  

It is also important to differentiate the challenges in real-time SVS assessment and data labeling. The 

motive of the real-time SVS assessment using ML based classifiers is to recognize the potential 

instabilities as early as possible using a short observation window after a disturbance. While the off-line 

data labeling process has the liberty to use much longer observation window to determine the SVS status 

after the disturbance, as shown in Figure 1 (c).  

 

 
(a)                                            (b)                                                                 (c) 

Figure 1. (a) sustained low voltage scenario (unstable), (b) voltage collapse associated with rotor angle instability (unstable) (c) 

Observation window for SVS prediction and data labelling 

3. PROPOSED AUTOMATIC LABEL GENERATION SCHEME 

The proposed scheme is initiated by generating a database of input data (in the form of simulated post-

disturbance voltage trajectories for a large number of contingencies) for which labels (SVS status) must 

be generated. In order to facilitate semi-supervised learning process, a small portion of the input data 

are manually observed and the corresponding labels are assigned. Then, the labeled and unlabeled 

voltage trajectories are fed to calculate a set of SVS indices, which are used as inputs for a graph-based 

label propagation algorithm. The labeled nodes propagate labels to non-labeled nodes based on the 

weightages computed via input features. The proposed scheme is shown in Figure 2. 
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Figure 2. Proposed automatic database labeling scheme. 

3.1 Voltage Trajectory Database Generation and Labeling 

The power system model used for data generation must be as accurate as possible, and important features 

for SVS such as dynamics loads need to be included. The validity of the proposed labeling process must 

be proven for credible contingencies and acceptable operational conditions.  Therefore, it is required to 

generate voltage trajectories under such conditions. Power systems are typically designed to tolerate 

contingencies up to a certain level, and therefore scenarios that make the post-event voltage unstable 

involves extreme contingencies such as faults cleared after a long delay (clearing by backup, breaker 

failure, etc.) or cascading faults. In this work, the voltage trajectories under different conditions were 

generated using automated PSSE® dynamic simulations. Afterwards a small portion of voltage 

trajectories are labeled manually by observing the plots of voltage trajectories. Therefore, the final 

dataset contains time series bus voltage magnitudes of test system for different conditions. The labeled 

data instances have logical variable which indicates whether the data instance is stable or unstable (-1 

for unstable / 1 for stable)) and unlabeled data instances have null values as the logical variable. 
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3.2 Input Feature Computation  

The time series voltage magnitudes of all the buses cannot be directly used as input to the label 

propagation algorithm because these raw data cannot generate a relationship between the observations. 

Therefore, three well-established SVS indices which are based on transient energy theories and voltage 

curve method are considered to use as the input features to increase the accuracy of this semi supervised 

learner. Considering the feasibility of implementing this method to a large system, SVS assessment 

indices which uses only voltage magnitude are considered. 

 3.2.1 NERC Contingency Severity Index (NERC CSI) 

The NERC/WECC Planning Standard [5] has introduced these indices to measure the severity of power 

system contingencies. Standard proposed two indices which analyze two different parameters under two 

different time windows of interest as shown in Figure 3. The first index SIV analyze the level of voltage 

dip after a contingency, and it is computed using (1). The second index SIt analyze the time during which 

the voltage trajectory fallen below 80% of the steady state voltage level. It is computed as defined in (2) 

and tf is the time at the end of observation window of 20 cycles from the fault clearing time (tcl). 

 

 

 
(1) 

 

 

 

 
(2) 

 

 
Figure 3. NERC CSI areas of interest 

 3.2.2 Lyapunov Exponent (LE) 

The Lyapunov Exponent (LE) is adopted from ergodic theory. LE has the potential to determine the 

chaotic nature of the system at any moment by analyzing the rate of divergence of the relevant dynamic 

system variables. Power systems are dynamic systems therefore, the power system voltage can be 

considered as a as dynamic variable and LE can be used to determine the SVS [9]. The computation of 

maximum LE at a given instance can be obtained from (3).  

 

 

(3) 

  

 

The λ represents the maximum LE at kth instance of the V data series where Δt is the sampling period. 

N represent the number of data points of the considered initial window. If the maximum LE of the system 
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is negative (positive) the voltage trajectory tends to converge (diverge). The mean of the series of 

maximum LE values generated for each data instance is considered as the input feature of label 

propagation algorithm.  

3.3 Label Propagation Algorithm 

After computing SVS indices. Theses indices are fed to label propagation algorithm. Generally, for a 

semi-supervised learner such as label propagation, a data set X={(x1
1.. xN

1),..,( x1
n.. xN

n), .. ,( x1
M.. xN

M)} 

which have N data instances and M number of features have two subsets XL and XU which represents 

labeled and unlabeled data respectively. Label Propagation is a graph based semi supervised learning 

algorithm [10]. Therefore, the first step is to generate a fully connected similarity graph (G). This graph 

represents the local relationship of labeled and unlabeled data instances. Therefore, the nodes or the 

edges (E) of the similarity graph represent the data instances and vertices (V) represents the relationship 

between data instances. The weightage of edges which connect i and j is computed using (4) for a kernel 

scale value of σ: 

 

(4) 

The larger edge weights easily allow labels to propagate to none labeled nodes. In order to generalize 

the weights throughout the graph, the probability transition matrix P defined in (5) is computed.  

where P is the probability of propagating from node j to i. Initially, all nodes have soft labels (Y(0)). 

Taking the product of these probability transition matrix and soft labels, the new labels are obtained. In 

label propagation the labeled outputs should be reinitiated to the original values. This process is iterated 

until the all the node labels converges. The label propagation algorithm is outlined in Figure 4 .  

 

  
Figure 4. Label propagation algorithm 

 

Figure 5. An example case to illustrate the process of label propagation 
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values are denoted on each vertex. P values of nodes which are not connected are assumed to be 

negligible. At iteration 0, unlabeled nodes are soft labeled with class “green”. The product of P matrix 

and the node label vector for the first iteration is shown in the table adjacent to the graph. The results of 

the product are approximated to closest label value, −1 or 1. For the first iteration, node c is a negative 

value while others are positive values, and therefore, node c is labeled as class “red” while others are 

labeled as “green” as shown in transition graph TG1. However, the originally labeled nodes are 

reinitiated to the original class and graph G1 is obtained after the first iteration. This process is continued 

until consecutive graphs contain same node labels (as in the example) or the algorithm reaches the 

iteration limit. The final graph is considered the fully labeled graph. 

 

4. CASE STUDY 

4.1 Test System 

The proposed scheme is tested on IEEE 32 bus Nordic test system [22]. The original system contains 

static load models. However, dynamic loads such as induction motors are the main contributor of short-

term voltage instability after faults [20]. Therefore, some of the static loads at random locations were 

replaced by dynamic loads. Complex Load Model or CLOD is a widely used dynamic load model. The 

architecture of CLOD is denoted in Figure 6. In this study, static loads were converted to CLOD model 

at locations marked in Figure 6.  
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Figure 6. Test system with CLOD load replacements and loading scenarios 

4.2 Training Database Generation 

In order to generate voltage magnitudes under different dynamic loading levels and contingencies, 

automated PSSE® dynamic simulation program is utilized. Large and small motors of CLOD models 

were loaded under different loading scenarios shown in Figure 6. In all simulation cases a value of 0.01 

pu is used for the branch resistance (R) and reactance (X) of CLOD model and the Kp value of the 

remaining loads is defined as 1. Voltage trajectories under different contingences such as three phase 

temporary line faults which cleared after 5 cycles,10 cycles, 15 cycles ,20 cycles and 24 cycles were 

generated. Additionally, three phase faults which cleared after 5 cycles were simulated at each generator 

and load bus. Under different contingencies and loading conditions 700 cases were generated. Then, the 

bus voltage magnitudes of each case were used to compute the considered indices. The IEEE Nordic 

test system contains 32 buses and since 3 SVS indices were considered, the total of 96 features were 

generated as inputs.  Finally, a database of size 700×96 is generated to train the semi-supervised learner. 
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4.3 Proposed Method to Validate Semi-supervised Learner 

The accuracy of this semi-supervised learner is validated using the generated database. All the 700 data 

instances are labeled manually for the purpose of validation. Randomly selected data instances were fed 

to the label propagation algorithm where the labels of the other data instances are deleted. Then the 

labels generated through the label propagation is cross validated with true labels and the accuracy is 

calculated as the percentage of correctly labeled data instances to unlabeled data instances. Training 

Accuracy (TA) is defined as in (6). 

 

  

(6) 

 

4.4 Impact of Different Input Features and Portion of Initial Labeled Data 

The effect of different indices towards accurate automatic labeling of database is analyzed using 10%, 

20% and 30% of labeled data. Percentages higher than 30% are not considered since the objective of 

this study is to obtain an accuracy using a minimum amount of sampled data. The accuracy levels under 

these conditions are tabulated in TABLE 1. 

 
TABLE 1. Case study results 

SVS Indices used as input 

features 

TA (%) under different 

percentages of labeled data 

10% 20% 30% 

NERC CSI (SIv & SIt) 80.6 82.5 82.8 

Lyapunov Exponent () 94.4 98.5 98.5 

All indices (SIv ,  SIt  & ) 98.2 99.5 99.5 

  

The impact of different sets of SVS indices can be observed in the results. The Lyapunov Exponent 

makes the highest accuracy of labeled data from an induvial index. When all the indices are used the 

automatic labeling process becomes more accurate. It can be seen that with 20% of manually labeled 

data, 99.5% accuracy can be obtained with the proposed label propagation method, when both indices 

are used as inputs.  

 

5. CONCLUSIONS 

The proposed label propagation method was applied to generate labels for 700 data instances generated 

by simulating IEEE Nordic power system using automated PSSE®. The results show the labeling 

accuracy changes with the percentage of manually labeled data instances provided as initial guidance 

and with the type of input features used. When the percentage of manually labeled data instances 

increased the accuracy of labeling process has increased. Furthermore, when all the indices are 

considered as input features the level of accuracy increases since the contribution of each index will be 

ensembled. For the considered problem, using three SVS indices (SIv ,  SIt  & ) as input features, labels 

are  assigned with an accuracy of 99.5 % when only 20% of the data are manually labeled. This proposed 

method provide fully labeled database for the purpose of training machine learning based SVS 

applications. This semi-supervised learning process can be used for other applications, for example to  

to screen the results of automated contingency simulations done for large networks which are currently 

done manually. 
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