

Transition to Climate Neutral, Safe and Sustainable Power Grids

SF₆ free, F-gas free and GHG free High Voltage Switchgear

Eduardo Gomez Hennig Director Sales and Innovation, Grid Technologies North America

October 31, 2022 Workshop 3, 11:00-12:00 Cigre Canada Conference and Expo, Calgary

1	Short Introduction
2	UN Sustainable Development Goals, grid operator's actions Greenhouse gas free & F-gas free grids, Regulations
3	Greenhouse gas free (SF ₆ - free, F-gas-free) Technology, Blue Portfolio, References
4	Way forward: Roadmap - Products and Regulations Specification and Evaluation Criteria
5	Questions and Discussion

There is an increasingly urgent need to achieve decarbonization in all sectors worldwide – actions to reduce GHG emissions must be taken fast

- In the UNFCCC (United Nations Framework Convention on Climate Change) Paris Agreement signed by 189 countries in 2015, it was agreed to limit anthropogenic global warming to well under 2° centigrade
- Each country must determine and report regularly on how it intends to mitigate its greenhouse gas emissions and thus reduce global warming

CAN

2035: Net zero electricity 2050: Net zero GHG pollution

US

2035: 100% clean electricity 2050: Net zero GHG pollution

EU

2050: First climate-neutral continent

China

> 2030: CO_2 emission peak

> 2060: Carbon neutrality

A-Z Site Index

Q

Home	About ~	Campaigns 🗸	Goals ~	Take Action 🗸	Partnerships 🗸	News And Media $\!$	Learn More
------	---------	-------------	---------	---------------	----------------	---	------------

Take Action for the Sustainable Development Goals

The Sustainable Development Goals are the blueprint to achieve a better and more sustainable future for all. They address the global challenges we face, including poverty, inequality, climate change, environmental degradation, peace and justice. Learn more and take action.

Siemens Energy is committed to realize UN Sustainable Development Goals We want to enable our transmission industry to achieve it sustainability goals

Core sustainable development goals for electrical grids

Health and Well-being

Goals are **highest occupational safety** for production, operation and service and **highest public health and safety**: ZERO toxicity and

ZERO pollution: no PFAS (forever chemicals) F-gases

Affordable and Clean Energy

Clean generation: ZERO GHG emission by renewable generation Clean grids: ZERO GHG use in electrical grids

Climate Action ZERO SF₆ ZERO GHG: Global Warming Potential (GWP) = 0

The world is jointly working on a safe and sustainable future Goals, Agreements and Regulations

UN Sustainable Development Goals

UN Paris Climate Agreement

EU 2050 First climate neutral continent China Before 2030 CO₂ Emission peak 2060 Carbon neutrality

EU F-GHG regulation

- **EU Chemical Strategy for Sustainability and a toxic-free environment**
- EU Safe and Sustainable by design
- **EU PFAS restrictions**

CAN: Net-zero Emissions Accountability Act 2035 net-zero electricity 2050 net-zero GHG emissions

<u>US</u>

2035 100% Clean electricity 2050 Net-Zero GHG pollution

Recommitting the US to the Paris Climate Agreement

Executive Order on Protecting Public Health and Environment

Executive Order on Tackling the Climate Crisis

<u>CLEAN Future Act</u> CARB regulation for SF₆ & GHG emissions

October 31, 2022, Cigre Canada Workshop – Transition to Climate Neutral, Safe and Sustainable Power Grids

Major TSO's have committed to the UN global sustainability goals and report according GHG protocol

UN Global Sustainability Goals

Reporting acc. to Greenhouse Gas (GHG) Protocol

7

The pressure on power companies to phase out SF₆ and other F-gases is especially high

- With global carbon emissions hitting an all-time high of 36.8 billion metric tons in 2019, there is growing pressure on power companies to step up their decarbonization efforts
- SF₆ is classified as a strong greenhouse gas (GHG) with a CO₂ equivalent of 25,200, but is still commonly used as an isolation gas in switchgear products
- An increasing number of companies have already committed to switching to SF₆ -free alternatives

California SF₆ & GHG Regulation

Electricity grids: GHG emissions

Final regulation order

Phase out of SF₆ in GIE (Gas-insulated equipment)

1) Stepwise phase-out of SF6 for GIE in electrical grids

Table 1. Phase-Out Dates for SF₆ GIE with Voltage Capacity ≤ 38 kV

Configuration	Voltage	Short-Circuit	Phase-Out Date
	Capacity	Current Rating (kA)	
	<u>(kV)</u>		
Aboveground	<u>< 38</u>	All	<u>January 1, 2025</u>
	<u>38</u>	All	<u>January 1, 2028</u>
Belowground	<u>≤ 38</u>	<u>< 25</u>	January 1, 2025
		<u>≥ 25</u>	January 1, 2031

Table 2. Phase-Out Dates for SF₆ GIE with Voltage Capacity > 38 kV

Voltage Capacity (kV)	<u>Short-Circuit</u> Current Rating (kA)	Phase-Out Date
<u>38 < kV ≤ 145</u>	<u>< 63</u>	<u>January 1, 2025</u>
	<u>≥ 63</u>	<u>January 1, 2028</u>
<u>145 < kV ≤ 245</u>	<u>< 63</u>	<u>January 1, 2027</u>
	<u>≥ 63</u>	<u>January 1, 2031</u>
<u>> 245</u>	All	<u>January 1, 2033</u>

2) Reporting of all gases with a GWP > 1

... Siemens Energy Blue F-gas-free portfolio with GWP = 0 fully complies with the Californian regulation and is not regulated (not covered gas because of GWP=0: no ban, no reporting duties)

Challenging the energy industry on SF6

Source: https://assets.siemens-energy.com/siemens/assets/api/uuid:ce31f501-4351-4511-8c60-2715119fab88/sustainability-report-2020-siemens-energy.pdf

011111

October 31, 2022, Cigre Canada Workshop – Transition to Climate Neutral, Safe and Sustainable Power Grids

© Siemens Energy 2021

EU F-Gas Regulation

Proposal for legislation from 05.04.2022 <u>COM(2022) 150 final</u>

DG Climate lead

	(a)	medium voltage switchgear for primary and secondary distribution up to 24 kV, with insulating or breaking medium using, or whose functioning relies upon, gases with GWP of 10 or more, or with GWP of 2000 or more, unless evidence is provided that no suitable alternative is available based on technical grounds within the lower GWP ranges referred to above;	1 January 2026
(23) Installation and replacement of the following electrical switchgear:	(b)	medium voltage switchgear for primary and secondary distribution from more than 24 kV and up to 52 kV, with insulating or breaking medium using, or whose functioning relies upon gases with GWP of 10 or more, or with GWP of more than 2000, unless evidence is provided that no suitable alternative is available based on technical grounds within the lower GWP ranges referred to above;	1 January 2030
	(c)	high voltage switchgear from 52 and up to 145 kV and up to 50 kA short circuit current with insulating or breaking medium using, or whose functioning relies upon gases with GWP of 10 or more, or with GWP of more than 2000, unless evidence is provided that no suitable alternative is available based on technical grounds within the lower GWP ranges referred to above;	1 January 2028
	(d)	high voltage switchgear of more than 145 kV or more than 50 kA short circuit current with insulating or breaking medium using, or whose functioning relies upon gases with GWP of 10 or more, or with GWP of more than 2000 unless evidence is provided that no suitable alternative is available based on technical grounds within the lower GWP ranges referred to above.	1 January 2031

Prohibition of Switchgear with F-gases starting 2026

- 1) Reporting obligations for F-Gases as SF₆ (ANNEX II and III)
- 2) Prohibition of switchgear with F-Gases with GWP > 10 (ANNEX IV)
 - Up to 24 kV: From January 1st, 2026
 24 to 52 kV: From January 1st, 2030
 - ➤ 52 to 145 kV: From January 1st, 2028
 - Above 145 kV: From January 1st, 2031

Exceptions:

Option a) If GWP below 10 is not available:

F-gases between GWP 10 and 2000 may be used

Option b) If GWP below 2000 is not available:

F-Gases above GWP 2000 may be used

... Siemens Energy Blue portfolio without F-gases and GWP = 0 fully complies with the EU Proposal and is not regulated

Restrictions on Chemicals SF₆ and PFAS* F-Gases are in restriction process globally

Risks of F-gases for health & safety

*per- and polyfluoroalkyl substances

- Toxic decomposition products arise in SF₆ due to electric arcs and in Fgas-mixes additionally during operation
- PFAS*: > 4,700
 chemicals that
 accumulate in humans
 and environment and are
 highly persistent and toxic
 (health impact; contami nation of water and soil).

Cost risks of F-gas regulations

- F-gas regulation (EU) | SF₆ reporting (US) | CARB (California)
- REACH (EU) to improve the protection of human health and the environment from the risks that can be posed by chemicals.
- Beginning of 2020, five EU states (DK, SE, NO, DE, NL) started activities with the target to ban all PFAS within EU, unless it is considered as 'essential' for society
- Worldwide organizations will follow, e.g. Stockholm Convention -UN; Environment Protection Agency (EPA) – US
- July 2021: EU Registry of restriction for PFAS
- July 2021: US Senate and House enacted PFAS Action Act
 - SF₆ is already restricted and phase-out is only a matter of time
 - PFAS F-gases restriction has started

Government of Canada: SF₆ a variety of preventive control actions PFAS, e.g. Flouronitrile: review policy developments in other jurisdictions

Government Gouvernement of Canada du Canada	Search ECCC	Government Gouvernement du Canada
MENU 🗸		MENU 🗸
Canada.ca > Environment and natural resources > Pollution and waste management > Ma	nagement of toxic substances	<u>Canada.ca</u> > <u>Health</u> > <u>Product safety</u> > <u>Chemical safety</u> > <u>Cher</u>
Toxic substances list		

Toxic substances list: sulphur hexafluoride

Sulphur hexafluoride (SF6) is a synthetic (i.e., human-made) gas that is colourless, odorless, non-toxic (except when exposed to extreme temperatures), and non-flammable. It is heavier than air and hence stays close to the ground upon release which can cause death by suffocation if large quantities are involved. SE6 is primarily used in the electricity industry as insulating gas for high voltage equipment. It is also used as cover gas in the magnesium industry to prevent oxidation (combustion) of molten magnesium. In lesser amounts, SE6 is used in the electronic industry in manufacturing of semiconductors, and also as tracer gas for gas dispersion studies in the industrial and laboratory settings. Sulphur hexafluoride acts as a greenhouse gas due to its very high heat trapping capacity.

Sulphur hexafluoride was added to Schedule 1 of CEPA in November 2005. Under subsection 90(1) of CEPA, a substance can be added to Schedule 1 of CEPA by the Governor in Council on the recommendation of the ministers of the environment and health if it is determined that a substance is entering or may enter the environment in a quantity or concentration or under conditions that:

(a) have or may have an immediate or long-term harmful effect on the environment or its biological diversity;

(b) constitute or may constitute a danger to the environment on which life depends; or

(c) constitute or may constitute a danger in Canada to human life or health.

emical Abstract Service) registry number. 2001

Based on an analysis of the existing science, most notably documented in the Third Assessment Report (TAR) of the Intergovernmental Panel on Climate Change (IPCC) and in subsequent reports including the Fifth Assessment Report (2014), there is sufficient evidence to conclude that the principal greenhouse gases namely carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulphur hexafluoride (SF₄) constitute or may constitute a danger to the environment on which life depends. The addition of sulfur hexafluoride to schedule 1 of CEPA gives the Government the power to put in place a variety of preventative or control actions to control SF6 under that same Act. The reporting on releases of SF6 to the atmosphere is regulated under section 46 of CEPA and is required from large industrial and commercial facilities that meet a certain threshold for their combined emissions in CO2 equivalent of the six principal greenhouse gases.

.		Covernment	cent Countemport	Ē		
	*	of Canada	du Canada		Search Canada.ca	
	MENUL					

nical substances 🔅 Other chemical substances of interest

Per- and polyfluoroalkyl substances (PFAS)

Per- and polyfluoroalkyl substances (PFAS) are a group of over 4,700 humanmade substances that are used as surfactants, lubricants, repellents (for dirt, water, and grease). They can be found in certain firefighting foams, textiles (including carpets, furniture, and clothing), cosmetics, and in food packaging materials.

Adverse environmental and health effects have been observed for well-studied PFAS (PFOS, PFOA, and LC-PFCAs and their salts and precursors) and they have been shown to pose a risk to the Canadian environment. In Canada, PFOS, PFOA, and LC-PFCAs (and their salts and precursors) are prohibited through regulations; however, scientific evidence to date indicates the PFAS used to replace regulated PFOS, PFOA, and LC-PFCAs may also be associated with environmental and/or human health effects.

Related information		
	Long-chain (C9-C20)	
	Perfluorocarboxylic Acids (LC-	
	PFCAs), their salts and	
	precursors	
•	Perfluorooctanoic Acid	
	(PFOA), its salts and	
	precursors	
•	Perfluorooctane sulfonate	
	(PFOS)	

Q,

Therefore, the Government of Canada is considering activities that would address PFAS as a class. A notice of intent to address the broad class of PFAS was published in the Canada Gazette, Part I:

Vol. 155 No. 17 - April 24, 2021.

- In 2021, the Government of Canada will:
- continue to invest in research and monitoring on PFAS
- collect and examine information on PFAS to inform a class-based approach
- review policy developments in other jurisdictions

In addition, within the next 2 years, the Government of Canada will publish a state of PFAS report, which will summarize relevant information on the class of PFAS.

Stakeholders and interested parties will have opportunities to provide input to help inform Government of Canada activities related to addressing PFAS as a class. As a first step, stakeholders are invited to provide initial feedback on the intent to address PFAS as a class, including challenges or opportunities they foresee, or indicate their interest in being engaged in future discussions by emailing substances@ec.gc.ca.

Risk Assessment

Source: https://www.canada.ca/en/health-canada/services/chemical-substances/other-chemical-substances-interest/oer-polyfluoroalkyl-substances.html

Order Adding Toxic Substances to Schedule 1 to the Canadian Environmental Protection Act, 1999

Source: https://www.canada.ca/en/environment-climate-change/services/management-toxic-substances/list-canadian-environmental-protection-act/sulphur-hexafluoride.html

October 31, 2022, Cigre Canada Workshop – Transition to Climate Neutral, Safe and Sustainable Power Grids

Siemens Energy is a trademark licensed by Siemens AG.

Restrictions on Chemicals SF₆ and PFAS* F-Gases are in restriction process globally

EU – Restriction for PFAS - 2025

Restriction of per- and polyfluoroalkyl substances (PFAS) under REACH

Webinar date

29 Oktober 2020 13:30 - 15:30 CET, GMT +1

Summary

Germany, the Netherlands, Norway, Sweden and Denmark are working on a REACH restriction proposal to limit the risks to the environment and human health from the manufacture and use of all per- and polyfluoroalkyl substances (PFAS). A call for evidence was held during the summer of 2020.

Join the webinar to learn about the REACH restriction process and status of the proposed PFAS restriction.

The webinar will be published on our home page on 29 October at 13:30 CET, GMT +1 together with instructions for joining a live Q&A session where experts from the 5 Member States will be answering your questions until 15:30. Join the Sil.do Q&A session or by going to slido.com and entering the event code: pfas2020

Five European states call for evidence on broad PFAS restriction - ECHA news release, 11 May 2020

More on PFAS

SEPA Conversal Protection Agency			Search EPA.gov	٩
Environmental Topics 🗸	Laws & Regulations 🗸	Report a Violation $ \checkmark $	About EPA 🗸	
PFOA, PFOS and Other	PFAS			CONTACT US
PFAS Home	EPA Action	ns to Addre	ess PFAS	
PFAS Explained				
EPA actions to address PFAS Under the Biden Harris Administration, EPA has restored scientific integrity and accelerated the pace of research and actions peeded to tackle the PFAS crisis and protect		PFAS Rele	News ases	
PFAS Strategic Roadmap	American communities.			
Data and Tools	 Learn more about PFAS. 		<u>Read the</u>	latest news
State Information	 Learn more about EPA's I 	PFAS Strategic Roadmap.	from EPA	about PFAS.
	Since January 2021, EPA has	taken bold actions, including:		

US – EPA action to address PFAS

Clean Water PFAS Actions

In April 2022, EPA announced three clean water actions that advance progress under EPA's PFAS Strategic Roadmap:

Draft Aquatic Life Criteria for PFOA and PFOS

- · EPA proposed the first Clean Water Act aquatic life criteria for PFAS, focusing on two of the most well-studied chemicals in this group: PFOA and PFOS. These draft recommendations reflect the latest peer-reviewed scientific knowledge regarding the toxicological effects of PFOA and PFOS on freshwater aquatic organisms.
- <u>Review the 2022 Draft Recommended Aquatic Life Criteria for PFOA</u>
- Review the 2022 Draft Recommended Aquatic Life Criteria for PFOS

US – Main stops PFAS pollution 2023-30

Be it enacted by the People of the State of Maine as follows:

Sec. 1. 38 MRSA §1612 is enacted to read

§1612. Products containing PFAS

therefore

*per- and polyfluoroalkyl substances

Regulations and legislations -> Globally decarbonization started to become climate-neutral

IPCC 08/2021

- <u>AR6 report</u>: Reduction of greenhouse gases to zero needed to mitigate climate change
 -> Replacement needed: SF₆ GWP₁₀₀ = 25.200, Fluoronitril C4 GWP₁₀₀ = 2750, GWP₂₀ = 4580
 AR 6 report: 6th Assessment Report by the Intergovernmental Panel on Climate Change from the United Nations.
- GHG / F-Gases
- ✓ EU Revision of F-gas regulation in response to the urgency for climate action in progress, for switchgears gradual bans of F-gases with GWP > 10 from 2026, see proposal from 05.04.2022 <u>COM(2022) 150 final</u>
- \checkmark California: Gradual ban on SF₆ from 2025, F-gases with GWP > 1 are subject to reporting analogously SF₆
- EU REACH: In order to improve the protection of human health and the environment, a ban on PFAS* has been initiated, unless there is an 'essential use', <u>Registry of restriction</u>

Chemicals / PFAS

Users

✓ The Environmental Protection Agency (EPA) in US established a PFAS* <u>Council</u>, US state <u>Maine</u> placed a first PFAS ban from 01.01.2030

*Per- und polyfluoroalkyl Substances including F-Gases as Fluoronitrile C4FN and Fluoroketone C5FK used as alternative to SF₆ in switchgears REACH: Registration, Evaluation, Authorization and Restriction of Chemicals is a European Union regulation.

 ✓ Globally, grid operators own commitments to net zero and specifications for equipment with GWP < 1, NG in UK wants to buy no SF₆ from 2026 and replace all equipment with SF₆ by 2050

15

Many TSO's provide detailed sustainability reports that address SF6 emissions

October 31, 2022, Cigre Canada Workshop – Transition to Climate Neutral, Safe and Sustainable Power Grids

Hydro One Sustainability Report 2020 SF₆ is highest Scope 1 direct emission and is directly influenceable

Climate Change: Mitigation and Adaptation

Approach

We are creating a better and brighter future for all Ontarians by focusing on reducing our carbon footprint and creating a resilient grid for the future. At the management level, climate change is governed by a cross-functional leadership level committee and guided by our environmental policy and climate change management strategy.

Low-Carbon Energy Mix

Ontario has one of the lowest carbon-emitting electricity grids in North America.

Ontario's electricity sources are largely carbon-free – Hydro One transmits and distributes electricity that is approximately 96%²⁰ carbon emission-free²¹ and our GHG emissions are estimated to account for only 0.2% of Ontario's total GHG emissions.²²

ESG Corner

2020 Performance

equivalents (tCO_e).

electricity grid.

Key ESG policies, programs and management systems guiding our actions include:

- Environmental policy
- Climate change policy
- Climate change management strategy

For 2020, Hydro One is reporting Scope 1 and Scope 2

GHG emissions. These emissions have been verified by a

third party.23 We have calculated these emissions using

Environment and Climate Change Canada in April 2021.

Hydro One's total reported GHG emissions²⁴ in 2020 are

Our Scope 1 emissions are predominantly from our

vehicle fleet, fuel consumption.25 fossil fuel-based

operations²⁶ and sulfur hexafluoride (SF₂)²⁷ releases.

estimated to be 344,722 metric tonnes of carbon dioxide

electricity generation in Hydro One Remote Communities

Scope 1 emissions increased by approximately 9% in 2020

as compared to the 2018 baseline year, due to an increase

Hydro One Remote Communities fossil fuel generation. It

is anticipated that these emissions will be reduced in the

future through an enhanced SF, management program

and as northern communities are connected to the

in SF, releases and a slight increase in emissions from

the most recent Canadian emission factors published by

- Grid resiliency strategy
- Climate change committee

GHG Emission Classification

Scope 1 - Direct emissions from sources owned or controlled by Hydro One (e.g., use of fossil fuels in our owned and operated fleet vehicles).

Scope 2 - Indirect emissions from the generation of acquired and consumed electricity, steam, heat, or cooling from sources owned or controlled by an external organization (e.g., from energy purchased for use in our facilities and GHG emissions related to transmission and distribution).

The primary source of Scope 2 emissions²⁸ is related to line losses which are determined by the energy lost as heat when we move power and the energy mix in the province. Scope 2 emissions were approximately 3% lower than our baseline emissions from 2018 primarily due to reduced line losses attributable to changing energy demands.

20 As determined by the Canadian Energy Regulator.

- 21 The average Ontario system grid emissions five-year average is 32 gCO, e/ kWh (2015-2019). Source of data: Canada's National Inventory Report, 1990-2019, Part 3, Annex 13, Table A13-7: Electricity Generation and GHG Emission Details for Ontario.
- 22 All data is from the Environment and Climate Change Canada's National Inventory Report 1990–2019: Greenhouse Gas Sources and Sinks in Canada, Part 3. Hydro One's emissions are those that directly relate to the electricity sector.
- 23 GHD Limited verified Hydro One's GHG Emissions report for the compliance period of January 1 to December 31, 2020. The <u>letter of assurance</u> can be found in the appendix.
- 24 Hydro One's GHG Inventory is aligned with the GHG Protocol Corporate Accounting and Reporting Standard; ISO 14064-1:2018; Greenhouse Gas Emissions: Quantification, Reporting and Verification Regulation (O.Reg. 390/18). Emission Factors are from Canada's National Inventory Report 1990-2019 and Global Warming Potential (GWP) from the IPCC Fourth Assessment Report (AR4).
- 25 Fuel consumption includes natural gas, propane, fuel oil and diesel. 26 Hydro One Remote Communities Inc. serves 22 communities in Ontario's
- or hydrother interface communications and a bar be communication or many and a more than the second and a more than the second and a more section 26 of the Electricity Act, 1998.
 Section 26 of the Electricity Act, 1998.
 Section 26 of the Electricity act, 1998.

switchgear.

Scope 2 emissions are not directly controlled by Hydro One and are subject to the <u>composition of energy generated and dispatched</u> through the Ontario grid for consumption. Scope 1 Emissions²⁹

Scope 2 Emissions

29 R22 is not represented on the graph as it's less than 1% of Scope 1 emissions, at 134 tCO₂e.

October 31, 2022, Cigre Canada Workshop - Transition to Climate Neutral, Safe and Sustainable Power Grids

© Siemens Energy 2021

Hydro One Sustainability Report 2020 GHG reduction targets for SF₆ : Replace and Elimate SF₆

1.Replace leaking equipment

"Reduce SF₆ gas releases and leaks by identifying and replacing equipment that contribute to leaks"

2.Eliminate SF6 usage

"Eliminate, whenever possible, the usage of SF_6 in our equipment"

Setting GHG reduction targets

At Hydro One we recognize the vital role we play in helping Ontario communities grow and thrive – now and in the future. We emit a small amount of GHG emissions but we believe that we have a responsibility to lower our footprint even further.

We are excited to announce our commitment to reduce our GHG emissions by 30% by 2030 and to achieve net zero emissions by 2050.

These are ambitious targets that will require us to substantially reduce our emissions and work with government and industry to advocate for a cleaner energy mix in Ontario.

Our current plan will see us making reductions from fleet vehicles, SF, gas releases and facility energy efficiency and include programs to:

- Decrease the amount of fossil fuels Hydro One's vehicle fleet consumes. We plan to convert 50% of our fleet of sedans and SUVs to electric vehicles or hybrids by 2025 and 100% by 2030.
- Reduce SF gas releases and leaks by identifying and replacing equipment that contribute to leaks, improve gas handling through training and eliminate, whenever possible, the usage of SF, in our equipment.

- Pursue renewable generation opportunities to reduce Hydro One Remote Communities' dependency on diesel fuel to generate power.
- As required, we will also investigate future opportunities to reduce emissions including carbon capture initiatives

 such as tree planting and biodiversity initiatives and consider carbon avoidance or offsets.

Carbon Tax Price today up to US\$ 140 / tCO₂e Example: 1 HV-GIS bay: 100kg banked SF₆. Tax 2.520t CO₂e x 130 US = US\$ 327.600

Source: World Bank, 28. October 2021 https://carbonpricingdashboard.worldbank.org/map_data_signmens_decarbonization_position_paper: Siemens joined the Carbon Pricing Leadership Coalition of the World Bank (CPLC) in 2016 to advocate the introduction of carbon pricing globally.

October 31, 2022, Cigre Canada Workshop – Transition to Climate Neutral, Safe and Sustainable Power Grids Siemens Energy is a trademark licensed by Siemens AG. 19 © Siemens Energy 2021

1	Short Introduction	
2	UN Sustainable Development Goals, grid operator's actions Greenhouse gas free & F-gas free grids, Regulations	
3	Greenhouse gas free (SF ₆ - free, F-gas-free) Technology, Blue Portfolio, References	
4	Way forward: Roadmap - Products and Regulations Specification and Evaluation Criteria	
5	Questions and Discussion	

SF_6 is the most harmful greenhouse gas with a GWP 25,200 times higher than CO_2

October 31, 2022, Cigre Canada Workshop – Transition to Climate Neutral, Safe and Sustainable Power Grids

Less harmful F-gas mixes are not a sustainable alternative since carbon neutrality can only be achieved with a GWP of Zero

¹ Besides vacuum and clean air, Fluoronitrile-mix (GE&ABB) is the most common SF_6 alternative ² Leakage rate of Fluoronitrile-mix is typically 0.5%

Phasing out SF_6 and other F-gas mixes is inevitable – clean air is the only future-proof option

Health and safety risks of F-gases

- SF₆ and fluoronitrile F-gas mixes produce toxic decomposition products during electric arcs and operation
- Floronitrile belongs to the PFAS¹ group: more than 4,700 chemicals which accumulate in both humans and the environment, and which are highly persistent and toxic (negative health impact; contamination of water and soil).

Cost risks of SF₆ / F-gas regulations

- F-gas regulation (EU)²
- SF₆ ban CARB (California) / PFAS ban DEP (Maine)
- REACH (EU) helps protect human health and the environment from risks associated with hazardous chemicals, such as PFAS. In 2020, five EU states³ started working on a proposal with the goal of banning all 'nonessential' PFAS within the EU
- Worldwide institutions will follow, e.g. Stockholm Convention (UN) and Environment Protection Agency (EPA) (US)
- SF₆ is already restricted and complete phase-out is more than probable
- F-gases are under investigation and restriction as well as a ban is possible
- Clean air does not need any regulation now or in the future

¹ Per- and polyfluoroalkyl substances

² The European Commission bans using F-gases with a GWP >10 in switchgear ³ DK, SE, NO, DE, NL

Until now, switchgear technology has typically used F-gases...

In particular, SF₆ gas. Because SF_6 is 25,200 times more climate-hostile than CO_2 , and stays in the atmosphere for over 3,000 years. That's not sustainable. And other F-gases neither.

ခင်ဗီဗီဇီ

Zero harmful gases. And Zero contribution to climate change.

Straightforward way to achieve carbon neutrality and Zero toxicity is by using clean air.

E

To compensate for the annual global installations of SF_6 would take almost 19 billion trees.

That's why our Blue portfolio uses clean air and vacuum switching technology.

But whenever technically possible, we must stop using these gases.

October 31, 2022, Cigre Canada Workshop – Transition to Climate Neutral, Safe and Sustainable Power Grids

CO₂

The Blue portfolio is based on game-changing technology: vacuum switching and clean air insulation

Non-SF₆ Solutions Alternate Gases – What's in Market

Product-evaluation criteria: Operating temperature range

Vacuum / clean air technology can be operated in a wide temperature range and is especially suitable for **very low temperature applications**

N=N 0=N N=N 0 Vacuum / Clean air	From -60 °C to + 55 °C
SF ₆ Sulfur- Hexafluoride	From -40 °C to + 55 °C
CO2-F-Mix Fluoronitrile	From -30 °C25 °C to + 55 °C
CO2-F-Mix C5 Fluoroketone	From +0 °C to + 55 °C

Product-evaluation criteria: Environmental impact

GWP (Global Warming Potential) in CO₂-equivalent

Vacuum / clean air – due to it's zero GWP – is the **most environment-friendly** switching technology of the world

N=N N=N Vacuum / clean air	GWP = 0
SF ₆ Sulfur- Hexafluoride	GWP ~ 25,200
CO2-F-Mix Fluoronitrile	GWP ~ 500

Note: Fluor-Ketone gas mixture not considered due to its inability to withstand temperatures below +5°C

October 31, 2022, Cigre Canada Workshop – Transition to Climate Neutral, Safe and Sustainable Power Grids

Product-evaluation criteria: Health & safety

Gas decomposition products, gas leakage, long-term gas behavior

Vacuum / clean air is **non-toxic**, **non-hazardous** and does not require special safety systems like ventilation or CO-monitoring

N=N 0-0 N=N 0-0 Vacuum / clean air	 Vacuum: no decomposition products ; sealed for life Clean air: no arc-quenching in air; no decomposition products gas leakage < 0.1% p.a./compartment 		
SF ₆ Sulfur- Hexafluoride	 Toxic decomposition products Hazardous when inhaled, causes skin & eye irritation Gas leakage < 0.1% p.a./compartment 		
CO2-F-Mix Fluoronitrile	 PFAS - Toxic decomposition products (details unknown) Hazardous (details unknown) Gas leakage < 0.5% p.a./compartment (details unknown) 		

Note: Fluor-Ketone gas mixture not considered due to its inability to withstand temperatures below +5°C

October 31, 2022, Cigre Canada Workshop - Transition to Climate Neutral, Safe and Sustainable Power Grids

Product-evaluation criteria: Switching performance

Vacuum circuit-breaker offers highest short-circuit switching capability without degradation and is maintenance-free

N=N N=N Vacuum / clean air	 Vacuum CB can switch up to 30 times 40 kA currents No degradation of short-circuit switching performance Vacuum interrupter: sealed for life; maintenance-free
SF ₆ Sulfur- Hexafluoride	 SF₆ CB can switch up to 10 times 40 kA currents Long term stability (SF₆ gas recombines) Known additional gas-maintenance efforts
CO2-F-Mix Fluoronitrile	 CO2-F-mix switching performance decreasing Does not recombine completely after arcing Additional maintenance efforts required

Note: Fluor-Ketone gas mixture not considered due to its inability to withstand temperatures below +5°C

October 31, 2022, Cigre Canada Workshop – Transition to Climate Neutral, Safe and Sustainable Power Grids

Properties of SF₆ and alternative gases Clean Air is most sustainable & safe

	SF ₆	Clean Air	F-Gas-mix based on Fluoronitrile		
Chemical formular	SF ₆	N ₂ + O ₂ (79,5%/20,5%)	C4F7N		
CO ₂ -equivalent / GWP ₁₀₀ (100 years horizon)	22.800 (IPCC AR4) 23.500 (IPCC AR5) 25.200 (IPCC AR6 2022)	0	2.100 (Manufacturer data)2.750 (New in IPCC AR6 2022)		
Boiling point (°Celsius)	-64°	< -183°	-4,7°		
Life time (years)	3.200	-	30		
Carrier gas	Pur or mixed with N ₂ , CF ₄	-	CO2 + C4F7N and in some cases + O2		
CO_2 -equivalent / GWP_{100}	25.200	0	> 500 based on applications		
Boiling point (°Celsius)	-40° (with CF ₄)25°	<-100°	-30°25°C dependant on C4F7N amount		
Dielectric strength	1 (normalized)	~ 0,4	~ 0,7		
Arcing impact					
Dissociation/decomposition	~ 2000 K (reversib.)	~ 7000 K (N2 reversib.)	> 920 K (irreversib.)		
Decomposition products	HF, SO ₂ , sulphur compounds	None under normal operating conditions (VIU)	F-Nitrile [4]: HF, CO, COF ₂ , CF ₃ CN, C ₂ F ₅ CN, C ₂ F ₆ C5-K. [6]: HF, CF ₄ , C ₂ F ₆ , C ₅ F ₁₀ O, C ₃ F ₈ , C ₄ F ₁₀ ,C ₃ HF ₇		
		If failure: Ozone, NOx	C_4F_8 , C_4F_6 , C_3F_6 , C_2F_3N , C_2N_2 in MV GIS with air		
			Preferred property Compromised property		

Clean air insulation technology Values for operators and society

Clean air is a composition of 80% N₂ and 20% O₂, cleaned and free from humidity (synthetic air)

- Global Warming Potential (GWP) = 0
- Low boiling point and low-temperature application
- Non-toxic
- High stability
- Not inflammable
- Ozone Depletion Potential (ODP) = 0
- F-gas free insulation with lowest requirements on transport, installation, operation, reporting and recycling
- **C**-gas free with no risk of C-decomposition in insulation and switching compartments
- Clean air insulation with well-known and proven material compatibilities
- No special gas-mixture gas cart
- No special gas training
- No EHS investment cost
- Easy availability of insulating gas
- No gas recycling cost
- No F-gas reporting cost
- Secure invest with no unknown follow-up cost from F-gas regulation

GIS Clean Air gas handling

Evacuating:

Evacuation of a Clean Air vessels to lower the pressure in a controlled manner down to 1bar abs. Then the gas compartment can be opened.

We do not store or re-use Clean Air. Evacuation of ambient air before filling with Clean Air is done with a vacuum pump.

Leakage detection:

Leakage detection after installation is done with Helium, like we do it during routine testing of enclosures in the factory. Leakage detection after installation at a specific module can be done with commercially available leakage spray (quick method). Leakage detection by measuring CO₂ absence (cumulative and quantitative measurement).

Filling:

Filling will be done directly from the Clean Air bottles with the filling device which is (as always) part of delivery of a new project.

Measuring:

After final filling, the moisture content is to be measured (dew point -10°C).

Gas handling after internal arc:

The main decomposition products are Ozone and NOx. Ozone (O_3) is recombining to O_2 within 1-2h. NOx are slowly disappearing. Partly it will be neutralized by the filter GIS material. Switchgear room needs to be vented. If the short-circuit-current was so small that the bursting disc did not operate, the gas room shall be evacuated through a filter. Behind the filter there are no more decomposition products. Filters are the same as for SF₆.

EC0

Quantum leaps in history of high-voltage circuit breakers

Blue Circuit Switcher 72.5 / 145 kV , 40 kA , 3150A

- Feststehende Anschlussbolzen
- 2 Isolations-Keramik

1

- 3 Feststehender Kontakt
- 4 Beweglicher Kontakt
- 5 Dampf- und Steuerschirm
- 6 Metallfaltenbalg
- 7 Führung (Lager)
- 8 Beweglicher Anschlussbolzen

Vacuum interrupter technology - customer value

For more than 40 years successful operational experience in medium-voltage, since 2010 in high-voltage

High reliability

due to the hermetically tight vacuum interrupter, eliminating any influence of decomposition products

High performance

Perfect for frequent switching applications: high number of short-circuit interruptions with excellent interrupting performance at rated nominal current and rated short-circuit currents throughout life-time of the vacuum circuit-breaker

Perfect for low temperature

No liquefaction of switching medium

No maintenance

Maintenance-free due to sealed for life technology; no spare part costs

No CO₂e emissions

Switching media (vacuum) with GWP=0; no CO_2e emissions during operation, maintenance or recycling

Vacuum Switching Technology

Vacuum Interrupters for 145 kV and 100 kA in operation

Highlights

- Extreme high reliability
- High manufacturing experience with more than 5 million units installed in different applications throughout the world
- Specific developments for OEM customers
- Large VI range for a variety of applications
- More than 1 Mio Vacuum Circuit-Breakers installed worldwide

Application in:

- Medium- and low-voltage switching devices
- Medium-voltage circuit breakers and contactors
- HV GIS and circuit breakers

100 kA

145 kV

Siemens vacuum interrupters Advantages of vacuum switching for high breaking currents [kA]

$$\mathbf{W} = \int_{\mathbf{0}}^{\mathsf{T}} \mathbf{u} * \mathbf{i} * \mathbf{dt}$$

Vacuum circuit breakers

- Low arc voltage
- Low arc length
- Short arc time
- Low arc energy

Vacuum Interrupters for 145 kV & 100 kA type-tested & in operation 170 kV and 245 kV up to 63 kA based on proven design elements

The Vacuum-Interrupter > 145 kV and > 40 kA is a combination of type-tested 50 kA / 3150 A contact systems and type-tested 145 kV insulation parts.

Production of vacuum interrupters

One-shot brazing technology under clean room conditions

The brazing furnace ensures that its complete volume is evacuated and the vacuum interrupters are exposed to a pre-defined temperature profile. Depending on loading, one cycle can require up to 20 hours.

The fully automatic system guarantees the vacuum interrupters to be "sealed for life".

Production of vacuum interrupters

X-ray based quality inspection

With help of x-ray based testing, positions and completeness of internal parts as well as brazed joints can be exactly ascertained.

This intermediate inspection grants for continuously high quality and longevity.

Vacuum interrupter - development of product/production technology

Summary Comparison of switching and insulation technology -> Blue products set the HSE and operational performance standard

Outstanding performance

+ Good performance O Average performance

Performance below average

October 31, 2022, Cigre Canada Workshop - Transition to Climate Neutral, Safe and Sustainable Power Grids Siemens Energy is a trademark licensed by Siemens AG.

43

T&D equipment manufacturers committed to ZERO F-gases

Toward T&D equipment free of fluorinated gases for sustainable, climate-neutral power grids

2021/11/02

A joint statement of T&D equipment manufacturers

The recently published 6th Intergovernmental Panel on Climate Change (IPCC) report shows the seriousness of the climate crisis. Human activity is changing the climate in unprecedented and sometimes irreversible ways. The electrical transmission and distribution (T&D) industry has an opportunity to lead society's response to deliver infrastructures that are targeting climate-neutral objective to underpin the transition to net zero emission economies.

The clean transport of low-carbon electricity is an essential element of national decarbonization plans, which will underpin the sustainable economies of the future. In conjunction with decarbonized power generation using renewable energy sources, it is vital to do the same for T&D power grids upon which the system relies.

For over 50 years, the recognized insulation and switching performance as well as proven and stable characteristics of SF₆ have contributed to the reliability, efficiency, and resilience of power network facilities, enabling compact equipment for all voltage classes. However, because SF₆ has a global warming potential over 25,000 times greater than CO_2 , action is now required to achieve truly sustainable power grids. To enable this change, we need to limit the SF₆ emissions and install new electrical equipment using clean reliable and non-toxic alternatives.

As equipment manufacturers, we embrace our responsibility to society and are fully committed to the net zero goal. Each of the undersigned has already developed or is in the process of developing T&D equipment completely free of fluorinated gases. The phase-out of fluorinated and PFAS-gases (per- and polyfluoroalkyl substances) in electrical T&D equipment, where alternatives are available, would accelerate progress toward a more sustainable future.

Each of the undersigned is committed to delivering T&D equipment free of fluorinated-gas and PFAS-gas needed to enable this transition. The first F-gas free products are successfully in operation, and each of the signing companies is committed to close the remaining portfolio gaps in the upcoming years in order to deliver on science-based net zero targets (SBTI) that companies are setting. These products will help deliver our own company health and climate commitments while enabling environmental improvements.

You are welcome to join in delivering this ambition and building truly sustainable clean power grids for a climate-neutral future.

The undersigned will continue to develop, manufacture, sell, and service independently. This statement shall in no way create any joint responsibility or liability or any form of cooperation or joint venture.

A joint statement of Pfiffner and Trench as AIS Instrument Transformer manufacturers

Environmental aspects are drastically gaining importance and becoming an essential part of today's society. Recent natural disasters, floods and drought followed by wildfires send a clear signal that the status quo needs to change.

The decarbonization of the power generation sector is ongoing with renewable energy making an essential contribution. The T&D sector needs to follow and foster the decarbonization process.

With its outstanding insulation and safety properties, SF6 is traditionally used in AIS High Voltage Instrument Transformers. SF6 is, however, considered to be a gas contributing to global warming when it is released into the atmosphere.

Trench and Pfiffner, both leading manufacturers of AIS High Voltage Instrument Transformers with SF6 insulation, with the aim to support decarbonization efforts, commit to focus their development activities in this product application on entirely Fgas free solutions. Both companies consider pure Air as a suitable solution in AIS applications to reduce the environmental impact to the maximum extent possible and contribute significantly to the decarbonization required to safeguard our planet.

The "Clean Air or SynAir Technology" is based on field proven SF6 designs offering the same operational benefits such as explosion safety, > 95% recyclability, maintenance freedom, and reliability.

While both companies will continue to develop their Air-based technology independently, they will work on standardizing aspects relevant to customers (e.g., diameter of filling devices) to reduce complexity for the Transmission Operators and their service teams.

PFIFFNER

man

Group CEO Pfiffner International

Dr. Jürgen Bernauer

Current and voltage - our passion

President Trench Group

Press release

Berlin, November 22, 2021

New production facility in Berlin: Siemens Energy wants to eliminate the world's most potent greenhouse gas from power transmission

- Siemens Energy invests over €60 million in Berlin site
- New vacuum interrupter production is a clear commitment to climate-neutral power transmission and the Berlin location

Siemens Energy is investing over €60 million in a new production facility in Berlin. In the future, vacuum interrupters will be manufactured in the company's switchgear plant in 6,200 m² of space. The vacuum interrupters are the technological core of the Blue Portfolio, which comprises climate-neutral power transmission products in the high-voltage range and uses industrially purified air for insulation and vacuum as the switching medium instead of climate-damaging fluorinated gases. The new manufacturing facility is scheduled to go into operation in 2023.

"The consequences of rapidly advancing global warming require a fundamental change in the way we deal with energy, including power transmission," said Ulf Katschinski, Senior Vice President Switching Products and Systems at Siemens Energy. "Siemens Energy aims to sell only F-gas-free high-voltage switching technology starting in 2030 at the latest. With our new vacuum interrupter production, we're laying the groundwork to achieve this goal and meet the growing demand for climate-neutral switchgear."

October 31, 2022, Cigre Canada Workshop – Transition to Climate Neutral, Safe and Sustainable Power Grids

SIEMENS

GUGIGV

Siemens Energy Blue high-voltage products

Innovation roadmap

October 31, 2022, Cigre Canada Workshop – Transition to Climate Neutral, Safe and Sustainable Power Grids

Siemens Energy | Transmission 45 Unrestricted © Siemens Energy, 2021

The Blue portfolio comprises individual products & solutions, supporting our clients on their way to Zero

Siemens Energy Blue has a clear Zero-compromise philosophy

Zero F-gases

Blue products contain Zero SF₆ or other F-gases and are thus out of scope of any kind of F-gas regulation

Blue products contain only clean air, and thus produce Zero greenhouse gases

Vacuum interrupters offer the highest short-circuit switching capability without degradation (up to 30 times 40kA currents) and freedom from maintenance (they are "sealed for life")

With only air to deal with during servicing, maintenance is made much easier and more cost-efficient. Moreover, Zero accounting and reporting is necessary and end of life disposal is simple

Blue products gain high public and market acceptance due to green-house gas-free operation, low maintenance and simple end of life treatment

All materials and substances used are environmentally-friendly and meet all health and safety standards (i.e. REACH, RoHS in Europe). A material impact analysis is an integral part of the design thinking approach

Recycling capability and defined return schemes make Blue products perfect examples of the circular economy

The operational lifetime of Blue products is expected to be more than 40 years - saving natural resources

LPIT

Advantages of Low Power Instrument Transformers compared to conventional Instrument Transformers:

- Enabler for digitalization of current and voltage signals
- One standardized multi-purpose device covering all current ratings
- Improved measurement performance
- Conversion of voltage and current signals into sample measure values according to IEC 61850

Savings:

 GIS dimensions, weight and gas quantity

Low Power Instrument Transformer

The new Instrument Transformer Technology reduces the Blue GIS footprint

2. Redundant: two current sensors and one voltage sensor in each bay

Key facts

- Customer: BKK Nett, Norway
- Modernization of a 145 kV Koengen substation in Bergen – Norway's largest cruise port
- Operation requires no SF₆ or any other greenhouse gas
- Year of order: 2018
- Energization: 2020

The world's first SF₆-free gas-insulated switchgear with clean air and vacuum technology

Gas-insulated switchgear

- Installation of 3 bays of the 8VN1 Blue GIS[™] for 145 kV
- Vacuum interrupter technology
- Clean air insulation technology

Low-power instrument transformers

 GIS includes low-power instrument transformers (LPIT) to ensure a compact design

0

Search

a > Offerings > Power Transmission > Innovation and Technology > Blue high-voltage products

It's Day Zero for Bergen Port

Cruise ships used to power up in the harbour using their diesel engines. Now, thanks to BKK Nett and Blue switchgear technology from Siemens Energy, they use only clean power. Zero greenhouse gas emissions, zero F-gases and zero health impact. It's their Day Zero. Let's plan yours.

Siemens Energy has more than 40 years experience in vacuum & air-insulation technology

2010

1970

First HV GIS with air-insulation Type: BISEP GIS 170 kV/ 50 kA with airpuffer CB & air-insulation References: 88 bays

1976

First HV vacuum CB Type: 3AV1FG 72.5 kV/ 31.5 kA with vacuum interrupter References: 6 units

First HV vacuum GIS with clean air 72.5 kV Type: 8VM1 72.5 kV/ 31.5 kA with vacuum CB & clean air-insulation References: >1000 bays

2017

First HV vacuum CB with clean air 145 kV Type: 3AV1FG 145 kV/ 40 kA with vacuum interrupter & clean airinsulation References: >150 units

2017

First vacuum GIS with clean air 145 kV Type: 8VN1 145 kV / 40 kA with vacuum CB and clean air-insulation References: >350 bays

2018

3AV1 Blue Dead Tank CB up to 145 kV

Product characteristics

- Vacuum interrupter technology | Clean air insulation technology
- Weight of SF₆ or other fluorinated greenhouse gases = 0 kg
- GWP Global Warming Potential = 0
- Expected product life-time > 50 years, first major inspection > 25 years
- No reporting or emission costs during operation and recycling, e.g. taxes or CO2e emission compensation (no SF₆- or F-gases)

Technical features

- Proven reliable energy spring drive mechanism
- Rated voltages up to 145 kV, rated frequency 50 / 60 Hz
- Rated continuous current up to 3150 A, rated short-circuit breaking current 40 kA
- Chopped wave (2 µs) voltage 838 kV
- Capacitive switching class (overhead lines & cables) C2
- Perfect for frequent breaking operations and extreme temperatures from -60 °C up to +55°C
- Leakage rate < 0.1% p.a.

Types / variants

- Three-pole operation (FG)
- Composite insulators

Type tests

• Planned for 2021 (IEEE / IEC 62271-100)

JXN USA News! Manufacturing of World's 1st Clean Air Vacuum Breaker 3AV1DT 123 kV, 40 kA, 3150A

Product Showcased @ JXN Factory

Siemens Energy's 8VM1 Blue 72.5 kV GIS®

Compact GIS solution designed for on- & offshore wind turbine installations based on proven component technology. 8VM1 Blue GIS[®] is designed using a wellproven modular platform concept based on decades of manufacturing and operating experience. This successful concept has been implemented in our new generation of HV GIS.

Siemens Energy's vacuum interrupter and clean air technology realizes the F-gas-free insulation and supports the demand for fully environmentally compatible wind power generation.

Siemens Energy's 8VM1 Blue GIS®

Main features

- World's leading environment-friendly and future-proof technology free of F-gases
- Innovative clean air insulation medium significantly reduces carbon footprint
- Proven vacuum interrupter technology
- Compact GIS solution designed for wind turbine installations
- Completely factory assembled, tested and shipped in single transport unit
- Safe and easy handling
- High operational safety
- Low operational costs throughout the entire life cycle

October 31, 2022, Cigre Canada Workshop - Transition to Climate Neutral, Safe and Sustainable

Typical switchgear configuration in offshore wind turbine installations

8VN1 Blue GIS® up to 145 kV

Product characteristics

- Vacuum interrupter technology | Clean air insulation technology
- Weight of SF₆ or other fluorinated greenhouse gases = 0 kg
- GWP Global Warming Potential = 0
- Expected product life-time > 50 years | first major inspection > 25 years
- No reporting or emission costs during operation and recycling, e.g. taxes or CO2e emission compensation (no SF₆- or F-gases)

Technical features

- Rated voltage up to 145 kV, rated frequency 50/60 Hz
- Rated short-circuit breaking current up to 40 kA
- Ambient temperature range -50 °C up to +55 °C
- · Stored-energy spring type driving mechanism of circuit-breaker
- Seismic withstand capability 1.0 g
- Leakage rate per year and gas compartment (type-tested) < 0.1%
- Equipped with new Sensgear® technology \rightarrow

Types / variants

- Indoor & outdoor installation
- Optional with Low Power Instrument Transformer (LPIT) for reduced bay size / weight

Type tested

• Acc. to IEC / IEEE

145 kV Blue GIS[™] solution

Clean Air insulation instead of SF₆ Power switching with single break vacuum CB

SIEMENS COCIGY

Technical features

- Rated short-circuit breaking current up to 40 kA
- Ambient temperature range -50 °C up to +55 °C
- Type tested seismic withstand capability 1.0 g
- Leakage rate per year and gas compartment (type-tested) < 0.1%
- Indoor & outdoor installation
- Equipped with new Sensgear™ technology

Types / variants

 Optional with Low Power Instrument Transformer (LPIT) for reduced bay size / weight

Gas-insulated switchgear 8VN1 Blue GIS[™] up to 145 kV / 40 kA H-arrangement

LPIT

Advantages of Low Power Instrument Transformers compared to conventional Instrument Transformers:

- Enabler for digitalization of current and voltage signals
- One standardized multi-purpose device covering all current ratings
- Improved measurement performance
- Conversion of voltage and current signals into sample measure values according to IEC 61850

Savings:

 GIS dimensions, weight and gas quantity

Low Power Instrument Transformer

The new Instrument Transformer Technology reduces the Blue GIS footprint

- 1. Combined electronic voltage and current sensor according to IEC
- 2. Redundant: two current sensors and one voltage sensor in each bay

Footprint Blue GIS

8DN8 SF₆ GIS 145 kV

Inductive Current & Voltage Transformer (ct, vt conventional) Bay width 0,8 m / / Weight ~ 4,5 t SF₆ ~ 85 kg (banked GWP = 2.000 t CO2-eq.)

8VN1 blue GIS 145 kV

Low-Power Instrument Transformer (non-conventional) Bay width 1 m / Weight ~ 4.7 t Clean air ~ 33 kg (GWP = 0)

3,2 m

8VN1 blue GIS 145 kV

Inductive Current & Voltage Transformer (ct, vt conventional) Bay width 1 m / Weight ~ 6 t Clean air ~ 38 kg (GWP = 0)

Blue Footprint 145 kV GIS

Clean Air is prerequisite for emission-free (GWP = 0) and pollution-free (non-toxic, F-Gas-Free) power grids.

To ensure dielectric performance, the size and pressure needs to be increased slightly.

LPIT (Low-Power Instrument Transformer) in GIS is a countermeasure to reduce the footprint , enabling digitalization of current and voltage signals.

Blue GIS footprint < 120% of the current SF₆ GIS Existing 145kV GIS (up to year 1999) can be replaced by Blue GIS within the given footprint

8VQ3 Blue Clean Air GIB™ 420 kV

Product characteristics

- · Clean air insulation technology
- Weight of SF₆ or other fluorinated greenhouse gases = 0 kg
- Global warming potential = 0
- Expected product lifetime > 50 years | first major inspection > 25 years
- No reporting or emission costs during operation and recycling, e.g. taxes or CO₂ emission compensation (no SF₆ or F-gases)

Technical features

- Rated voltage up to 420 kV
- Rated frequency 50/60 Hz
- Rated short-circuit breaking current up to 63 kA
- Rated continuous current up 5000 A
- Ambient temperature range -50°C to + 55°C
- Leakage rate per year and gas compartment (type-tested) < 0.1%

Types / variants

· Indoor and outdoor installation

Type tested

• Acc. to IEC / IEEE

420 kV SF₆-free switchgear becomes reality

Blue Instrument Transformer® up to 420 kV

Product characteristics

- Clean air insulation technology: Climate neutral, safe, reliable
- 50 years of experience with > 40.000 gas-insulated instrument transformers delivered
- Utilizing the proven SF₆ instrument transformer designs (current and voltage measurement characteristics identical with SF₆ insulated design)

Technical features

- Perfect for low temperature application -50 °C and below
- · No special gas handling equipment needed; no gas handling during lifetime required
- No reporting or emission costs during operation and recycling, e.g. taxes or CO2e emission compensation (no SF₆- or F-gases)
- Equipped with new Sensgear® technology \rightarrow

Types / variants

• Available for air-insulated substations (current transformer, voltage transformer, combined instrument transformer) and gas-insulated substations (current transformer, voltage transformer)

Type tested

Completely type-tested according to latest international standards

Blue Station Service Voltage Transformer[®] up to 420 kV and 167 kVA

Product characteristics

- 50 years of experience with > 40.000 gas-insulated instrument transformers delivered
- Utilizing the proven SF₆ power voltage transformer designs (voltage and power ratings identical with SF₆ insulated design)

Technical features

- Continuous output power up to 167 kVA
- Available secondary voltage from 100 V 1000 V
- Perfect for low temperature applications of -50 °C and below
- No special gas handling equipment needed; no gas handling during lifetime required
- No reporting or emission costs during operation and recycling, e.g. taxes or CO2e emission compensation (no SF₆ - or F-gases)

Types / variants

- · Available for air insulated substations
- Voltage levels in accordance with international standards
- Output power classes 25 kVA, 50 kVA, 100 kVA, 125 kVA and 167 kVA

Type tested

· Completely type-tested according to latest international standards

Global project references for more than 2500 units More than 700 units in operation

SIEMENS COCIGY

2,500,000 tons of

CO₂ equivalent Blue projects prevent the installation of 2,500,000 tons of additional greenhouse gas on electrical grids

72.5 kV Blue Circuit Breakers, LT 6 in operation in EU since 2010 2 in operation in USA since 2020

72.5 kV Blue GIS Wind >1000 ordered for GBR, USA, NDL, TAI, DEN, CHN, FRA >200 in operation

72.5 &123 kV Blue Circuit Breakers, DT >20 ordered for USA, Delivery in 2021-2023

145 kV Blue Circuit Breakers, LT >150 ordered for GER, POL, NOR, SWE, DEN, KAZ, USA, CHE, GBR, ROU... Thereof >100 in operation,

145 & 245 & 420 kV Blue Instrument Transformers >400 ordered in US, NOR, SWE, GER > 250 in operation

145 kV Blue GIS >350 ordered in NOR, USA, GER, SPA, DEN, NDL > 25 in operation

420 kV Blue GIB, extensions, bushings >5000 m single-phase ordered in GER, 600 m delivered GBR

1	Short Introduction
2	UN Sustainable Development Goals, grid operator's actions
	Greenhouse gas free & F-gas free grids, Regulations
3	Greenhouse gas free (SF ₆ - free, F-gas-free) Technology,
	Blue Portfolio, References
4	Way forward:
	Roadmap - Products and Regulations
	Specification and Evaluation Criteria
5	Questions and Discussion

Roadmap from Zero to Zero: Offering a fully F-gas-free, climate-neutral Blue portfolio by 2030

October 31, 2022, Cigre Canada Workshop – Transition to Climate Neutral, Safe and Sustainable Power Grids

© Siemens Energy, 2021

Blue product evaluation

October 31, 2022, Cigre Canada Workshop – Transition to Climate Neutral, Safe and Sustainable Power Grids

Siemens Energy | Transmission 68 Unrestricted © Siemens Energy, 2021

Customer product evaluation criteria for switchgear products

Environmental impact Health & safety

Performance

Gas handling & costs Manufacturer competence

Three isolation mediums: a comparison

Vacuum / clean air

N₂ and O₂ (80% / 20%)

CO₂-F mix fluoronitrile¹

 $(CF_3)_2 CFCN$

SF₆ sulfur hexafluoride

 SF_6

¹ Fluor-ketone gas mix is not considered due to its inability to withstand temperatures below 5°C

Criteria 1: Environmental impact

Vacuum / clean air

Zero greenhouse gas GWP = 0 (Immediately absorbed)

CO₂-F mix fluoronitrile

Greenhouse gases GWP ~ 500 (Lifetime 30 years)

SF₆ sulfur hexafluoride

Greenhouse gas GWP ~ 25,200 (Lifetime 3,200 years)

Vacuum / clean air is the most environmentally friendly switching technology in the world

Criteria 2: Health & safety

Vacuum / clean air

Vacuum: Zero decomposition products; sealed for life

Clean air: non-toxic decomposition products, non-hazardous

Gas leakage < 0.1% p.a./compartment

CO₂-F mix fluoronitrile

Toxic decomposition products (details unknown)

Hazardous (details unknown)

Gas leakage < 0.5% p.a./compartment (details unknown)

SF₆ sulfur hexafluoride

Toxic decomposition products Hazardous when inhaled, causes skin and eye irritation

Gas leakage < 0.1% p.a./compartment

Vacuum / clean air is **non-toxic**, **non-hazardous** and does not require special safety systems such as ventilation or CO₂-monitoring
Criteria 3: Performance

Vacuum / clean air

Vacuum circuit breaker can switch up to 30 times 40 kA currents Zero degradation of short-circuit switching performance From -60 °C to +55 °C

CO₂-F mix fluoronitrile

CO₂-F mix shows decreasing switching performance Does not recombine completely after arcing From -25 °C to +55 °C

SF₆ sulfur hexafluoride

 SF_6 CB can switch up to 10 times 40 kA currents Long term stability (SF_6 gas recombines) From -40 °C to +55 °C

Vacuum / clean air offers the **highest short-circuit switching capability** without degradation and can be operated in a wide temperature range, being especially suitable for **very low temperature applications**

Criteria 4: Gas handling & costs

Vacuum / clean air

Vacuum interrupter is sealed for life > Zero maintenance No special tools, training, ventilation or reporting No recycling or special EOL treatment necessary Lowest lifecycle costs

CO₂-F mix fluoronitrile

unknown

Special tools, training, ventilation and reporting

No recycling option, disposal can cause extra CO2

Higher lifecycle costs

SF₆ sulfur hexafluoride

Additional gas maintenance Special tools, training, ventilation and reporting Can be cleaned and re-used (extra effort) Higher lifecycle costs

Vacuum / clean air is maintenance- and regulation-free and requires no special EOL treatment. Overall it has the lowest lifecycle costs

Criteria 5: Manufacturer competence

Siemens Energy has over 50 years of experience in switchgear with global production of 400,000+ GIS bays and 145,000+ CBs as well as more than 40 years of experience in vacuum and air insulation technology

Customer product evaluation criteria for switchgear products

Environmental impact Health & safety

" 2 1

Performance

Zero greenhouse gases and Zero global warming potential . Zero toxicity and Zero hazard

Highest switching capability with Zero degradation and a wide temperature range (down to lowest temperatures) Zero maintenance vacuum technology. Zero training, reporting, or special EOL treatment needed. Lowest lifecycle costs

Gas handling

& costs

Manufacturer competence

Rich experience: > 50 years in switchgear, > 40 years in vacuum and air insulation

Evaluation criteria including sustainability indices are being developed by customers: Example GIS with alternative gases

SU	STAINABILITY	TECHNOLOGY		OPERATION		INVESTMENT
	HSE Criteria	Technical Criteria		Operation & Maintenance		Commercial Criteria
Compar	y Sustainability Goals	Operational temperature range		Gas handling / Special equipment	•	Equipment price
GWP ins	sulating gas	Gas Leakage Rate	•	Availability of insulation gas	•	Transport, Installation & Commission
 HSE asp toxic-fre 	pects insulating gas, e	SC switching capability		Inspection / Revision intervals	•	Taxes, fees
 F-gas free 	ee, PFAS-free	CB technology & performance		 Special Training of own stuff 	•	End of life, recycling
• EPD (IS	O 14021)	 Digitalization technology 		 Reporting efforts (F-gas, CO2) 	•	Warranty, Liability, other commercial T&C´s
			U		U	
Complete Tender Evaluation						

October 31, 2022, Cigre Canada Workshop – Transition to Climate Neutral, Safe and Sustainable Power Grids Siemens Energy is a trademark licensed by Siemens AG.

Evaluation criteria based on TCO including sustainability criteria helping customers to support UN Global Goals

Possible Tender Evaluation Criteria:

Equipment Price & Commercial Conditions Technical Criteria Sustainability Criteria

Technical (General)

Physical footprint (dimensions) 3ph switching capability > 12 times 40kA Leakage rate < 0,1% Building ventilation required

Technical (Operation & Maintenance) Special gas processing equipment required Availability of insulating gas (no of suppliers) Gas handling / contamination tests / precaution measures Ease of degassing and gassing Training and reporting efforts

GWP Insulating Gas:

> 1 - 1000 > 0.1 - 1 < 0,1

HSE Aspects

No F- gas used / No environmental risks (water/soil) due to PFAS Not Harmful to health/ no toxicity classification Non-Hazardous or non-toxic decompensation products Finalized HSE regulation assessment /hazard analysis

EPD, Diversity & Wages & LTIF-Rate Environmental Product Declaration available (yes/no) Target of diversity/inclusion goals and fulfilment Paying wages > labour agreement LTIF Rate < 0,3% (TRIR)

Siemens Energy Strategic CSR targets

Examples for customer tender evaluations, in addition to TCO technical aspects and sustainability become more important

APG / Austria

				-	-
2	20	1	7	~	6

2 Zuschlagskriterien und Gewichtung

Der Zuschlag bzw. der Abschluss der Rahmenvereinbarung erfolgt nach dem Bestangebotsprinzip mit jenem Bieter, der das technisch wirtschaftlich günstigste Angebot unter Einhaltung aller vorgegebenen Bedingungen je Los gelegt hat. Bei der Ermittlung des technisch wirtschaftlich günstigsten Angebotes werden nur jene Angebote berücksichtigt, die nicht ausgeschlossen bzw. ausgeschleden worden sind.

Die Bewertung der einzelnen Angebote ergibt sich aus den Zuschlagskriterien:

Zuschlagskriterium	Gewichlung
Gesamtpreis je Los	70 Punkte
Qualität und Nachhaltigkeit	30 Punkte

Zuschlagskriterium "Preis" (70 Punkte)

Das niedrigste Angebot, das die Ausschreibungskriterien erfüllt, wird mit 70 Punkten bewertet. Je höher ein Angebot im Vergleich zum Niedrigstangebot ist, desto niedriger ist auch die Punkteanzahl.

Berechnungsformel: 70 x Niedrigstes Angebot / Angebotspreis

Zuschlagskriterium "Qualität und Nachhaltigkeit" (30 Punkte)

 Global Warning Potential (GWP-100 nach internationalen Standards, z.B. Greenhouse Gas Protocol, IPCC-AR5): max. 18 Punkte

o Mindestanforderung Gasgemisch: GWP ≤ 500

o Angabe des GWP des Gasgemischs (Bewertung siehe u.a. Tabelle)

wischen 500 und >1	4
wischen 1 und >0,5	8
Zwischen 0,5 und >0,1	12
≤0.1	18

Zusätzliche Angabe GWP absolut pro Gerät

- Handhabung des eingesetzten Isolier- und Löschmediums im Betrieb: Sind Spezialgeräte zur Evakuierung des Gasraumes notwendig? – max. 5 Punkte
- Verfügbarkeit des Gasgemischs bei mehreren Lieferanten? max. 5 Punkte
- Gewährleistungs- und Garantieverlängerung (max. 2 Jahre) max. 2 Punkte
- Beschreibung des Bieters zum Thema Produkt-Umweltdeklaration gemäß ISO 14025 (in Planung, in Bearbeitung, bereits erhalten) – informativ, keine Punktevergabe

TransnetBW / Germany

08 AUSWERTUNG DER ANGEBOTE

Therwil / Switzerland

Subkriterium	Gewichtung %
	40%
Havarie- und Schottungskonzept (10%) Gastyp / GWP / Gasmenge (10%) Anlagendisposition (7%) Gasdruck / Gashandling (2%) Garantierte max. Leckrate (2%) Konzept TE-Sensoren (2%) Konzept Gegen Wiedereinschalten sichern (2%)	35%
gemäss Eignungskriterien Qualität der gelieferten Schaltanlagen gemäss Auskünften der Referenzpersonen	15%
Interventionszeit von einem werkseigenen Spe- zialmonteur zum Standort der Schaltanlage. Interventionszeit von einem werkseigenen	10%
	Subkriterium Havarie- und Schottungskonzept (10%) Gastyp / GWP / Gasmenge (10%) Anlagendisposition (7%) Gasdruck / Gashandling (2%) Garantierte max. Leckrate (2%) Konzept TE-Sensoren (2%) Konzept Gegen Wiedereinschalten sichern (2%) gemäss Eignungskriterien Qualität der gelieferten Schaltanlagen gemäss Auskünften der Referenzpersonen Interventionszeit von einem werkseigenen Spe- zialmonteur zum Standort der Schaltanlage.

L_r: the leakage rate

elia

October 31, 2022, Cigre Canada Workshop - Transition to Climate Neutral, Safe and Sustainable Power Grids

79

Grid operators started to specify T&D equipment with GWP < 1

- Specification: Usual technical specification, plus sustainability goals, e.g. GHG free or with a GWP of Zero or <1
- 2. Evaluation criteria according your criteria, e.g. reliability, installations, technical performance, sustainability, total cost of ownership
- 3. Financial evaluation: Total cost of ownership: Investment of products and buildings, installation, operation, maintenance, end of life, risk of stranded assets due to regulation

Zero-harm energy transmission is already becoming a reality around the world

Status: June 2022

> 6,5 million hours

of commercial operation

~ 2,500,000 tons

of CO₂-equivalent saved

> 2,500 units

> 700 units already in operation

F-gas-free clean air & vacuum switching technology set sustainable standards and is the future of global power grids!

Summary and Q&A

Most environment-friendly technology, **Zero emission: GWP = 0**

No special health and safety requirements, **Zero pollution:** non-toxic, non-hazardous, F-gas-/ PFAS-gas-free

Out of any F-gas & chemical regulations now & in future!

No degrading effects during operation, long-term stable & reliable at improved technical performance!

Lowest lifetime costs, Simple gas handling, No recovery & recycling needed! Multiple gas supplier!

Thank you!

Eduardo Gomez Hennig, MSc, MBA.

Director Sales and Innovation, North America

Cell: +1 416 320 1521

eduardo.gomez_h@siemens-energy.com

siemens-energy.com

Further reading:

- Siemens Energy Blue Products
- Siemens Energy Gas-insulated substations
- Siemens Energy Transmission Products

Disclaimer

Subject to changes and errors. The information given in this document contains only general descriptions and/or performance features which may not always specifically reflect those described, or which may undergo modification in the course of further development of the products. The requested performance features are binding only when they are expressly agreed upon in the concluded contract.

All product designations, product names, etc. may contain trademarks or other rights of Siemens AG, its affiliated companies or third parties. Their unauthorized use may infringe the rights of the respective owner.